Ovi Tareque Bashar, Bashree Nomaiya, Nyeem Hussain, Wahed Md Abdul
Department of EECE, Military Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka, 1216, Bangladesh.
Comput Biol Med. 2025 Mar;186:109617. doi: 10.1016/j.compbiomed.2024.109617. Epub 2025 Jan 10.
The detection and excision of colorectal polyps, precursors to colorectal cancer (CRC), can improve survival rates by up to 90%. Automated polyp segmentation in colonoscopy images expedites diagnosis and aids in the precise identification of adenomatous polyps, thus mitigating the burden of manual image analysis. This study introduces FocusUNet, an innovative bi-level nested U-structure integrated with a dual-attention mechanism. The model integrates Focus Gate (FG) modules for spatial and channel-wise attention and Residual U-blocks (RSU) with multi-scale receptive fields for capturing diverse contextual information. Comprehensive evaluations on five benchmark datasets - Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETISLarib, and EndoScene - demonstrate Dice score improvements of 3.14% to 43.59% over state-of-the-art models, with an 85% success rate in cross-dataset validations, significantly surpassing prior competing models with sub-5% success rates. The model combines high segmentation accuracy with computational efficiency, featuring 46.64 million parameters, 78.09 GFLOPs, and 39.02 GMacs, making it suitable for real-time applications. Enhanced with Explainable AI techniques, FocusUNet provides clear insights into its decision-making process, improving interpretability. This combination of high performance, efficiency, and transparency positions FocusUNet as a powerful, scalable solution for automated polyp segmentation in clinical practice, advancing medical image analysis and computer-aided diagnosis.
结直肠息肉是结直肠癌(CRC)的癌前病变,检测和切除结直肠息肉可将生存率提高多达90%。在结肠镜检查图像中进行自动息肉分割可加快诊断速度,并有助于精确识别腺瘤性息肉,从而减轻人工图像分析的负担。本研究介绍了FocusUNet,这是一种集成了双注意力机制的创新型双层嵌套U结构。该模型集成了用于空间和通道注意力的聚焦门(FG)模块以及具有多尺度感受野的残差U块(RSU),以捕获不同的上下文信息。在五个基准数据集——Kvasir-SEG、CVC-ClinicDB、CVC-ColonDB、ETISLarib和EndoScene上进行的综合评估表明,与现有最先进模型相比,Dice分数提高了3.14%至43.59%,在跨数据集验证中的成功率为85%,显著超过了成功率低于5%的先前竞争模型。该模型将高分割精度与计算效率相结合,具有4664万个参数、78.09 GFLOP和39.02 GMac,适用于实时应用。通过可解释人工智能技术进行增强后,FocusUNet对其决策过程提供了清晰的见解,提高了可解释性。这种高性能、高效率和透明度的结合使FocusUNet成为临床实践中自动息肉分割的强大、可扩展解决方案,推动了医学图像分析和计算机辅助诊断的发展。