Suppr超能文献

深度学习集成 2D CNN 方法在肺癌检测中的应用。

Deep learning ensemble 2D CNN approach towards the detection of lung cancer.

机构信息

Department of Computer Sciences, Bahria University, Islamabad, Pakistan.

Faculty of Computer Studies, Arab Open University Bahrain, A'ali, Bahrain.

出版信息

Sci Rep. 2023 Feb 20;13(1):2987. doi: 10.1038/s41598-023-29656-z.

Abstract

In recent times, deep learning has emerged as a great resource to help research in medical sciences. A lot of work has been done with the help of computer science to expose and predict different diseases in human beings. This research uses the Deep Learning algorithm Convolutional Neural Network (CNN) to detect a Lung Nodule, which can be cancerous, from different CT Scan images given to the model. For this work, an Ensemble approach has been developed to address the issue of Lung Nodule Detection. Instead of using only one Deep Learning model, we combined the performance of two or more CNNs so they could perform and predict the outcome with more accuracy. The LUNA 16 Grand challenge dataset has been utilized, which is available online on their website. The dataset consists of a CT scan with annotations that better understand the data and information about each CT scan. Deep Learning works the same way our brain neurons work; therefore, deep learning is based on Artificial Neural Networks. An extensive CT scan dataset is collected to train the deep learning model. CNNs are prepared using the data set to classify cancerous and non-cancerous images. A set of training, validation, and testing datasets is developed, which is used by our Deep Ensemble 2D CNN. Deep Ensemble 2D CNN consists of three different CNNs with different layers, kernels, and pooling techniques. Our Deep Ensemble 2D CNN gave us a great result with 95% combined accuracy, which is higher than the baseline method.

摘要

近年来,深度学习已成为帮助医学科学研究的重要资源。借助计算机科学,已经开展了大量工作来发现和预测人类的各种疾病。这项研究使用深度学习算法卷积神经网络 (CNN) 从提供给模型的不同 CT 扫描图像中检测肺结节,这些结节可能是癌症。为此,开发了一种集成方法来解决肺结节检测问题。我们没有仅使用一个深度学习模型,而是结合了两个或更多 CNN 的性能,以便它们可以更准确地执行和预测结果。该研究使用了 LUNA 16 大挑战赛数据集,该数据集可在其网站上在线获取。该数据集包含带注释的 CT 扫描,以便更好地理解数据和有关每个 CT 扫描的信息。深度学习的工作方式与我们大脑神经元的工作方式相同;因此,深度学习基于人工神经网络。收集了大量 CT 扫描数据集来训练深度学习模型。使用数据集来准备 CNN 以对癌症和非癌症图像进行分类。开发了一组训练、验证和测试数据集,我们的二维深度集成 CNN 使用这些数据集。二维深度集成 CNN 由三个具有不同层、内核和池化技术的不同 CNN 组成。我们的二维深度集成 CNN 取得了 95%的综合准确率的优异成绩,高于基线方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a844/9941084/8116137683f3/41598_2023_29656_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验