Suppr超能文献

MedKnee:一种基于深度学习的新型软件,用于自动预测膝关节X线骨关节炎

MedKnee: A New Deep Learning-Based Software for Automated Prediction of Radiographic Knee Osteoarthritis.

作者信息

Touahema Said, Zaimi Imane, Zrira Nabila, Ngote Mohamed Nabil, Doulhousne Hassan, Aouial Mohsine

机构信息

MECAtronique Team, CPS2E Laboratory, Ecole Nationale Supérieure des Mines de Rabat, Rabat 10000, Morocco.

Ministry of Health and Social Protection, Provincial Ministerial Administration of El Kelaa des Sraghna, El Kelaa des Sraghna 43000, Morocco.

出版信息

Diagnostics (Basel). 2024 May 10;14(10):993. doi: 10.3390/diagnostics14100993.

Abstract

In computer-aided medical diagnosis, deep learning techniques have shown that it is possible to offer performance similar to that of experienced medical specialists in the diagnosis of knee osteoarthritis. In this study, a new deep learning (DL) software, called "MedKnee" is developed to assist physicians in the diagnosis process of knee osteoarthritis according to the Kellgren and Lawrence (KL) score. To accomplish this task, 5000 knee X-ray images obtained from the Osteoarthritis Initiative public dataset (OAI) were divided into train, valid, and test datasets in a ratio of 7:1:2 with a balanced distribution across each KL grade. The pre-trained Xception model is used for transfer learning and then deployed in a Graphical User Interface (GUI) developed with Tkinter and Python. The suggested software was validated on an external public database, Medical Expert, and compared with a rheumatologist's diagnosis on a local database, with the involvement of a radiologist for arbitration. The MedKnee achieved an accuracy of 95.36% when tested on Medical Expert-I and 94.94% on Medical Expert-II. In the local dataset, the developed tool and the rheumatologist agreed on 23 images out of 30 images (74%). The MedKnee's satisfactory performance makes it an effective assistant for doctors in the assessment of knee osteoarthritis.

摘要

在计算机辅助医学诊断中,深度学习技术已表明,在膝关节骨关节炎的诊断中能够提供与经验丰富的医学专家相媲美的诊断性能。在本研究中,开发了一种名为“MedKnee”的新型深度学习(DL)软件,以根据凯尔格伦和劳伦斯(KL)评分协助医生进行膝关节骨关节炎的诊断过程。为完成此任务,从骨关节炎倡议公共数据集(OAI)获取的5000张膝关节X光图像按照7:1:2的比例分为训练集、验证集和测试集,且在每个KL等级上分布均衡。预训练的Xception模型用于迁移学习,然后部署在使用Tkinter和Python开发的图形用户界面(GUI)中。所建议的软件在外部公共数据库“医学专家”上进行了验证,并在本地数据库中与风湿病专家的诊断进行了比较,由放射科医生参与仲裁。MedKnee在医学专家-I上测试时准确率达到95.36%,在医学专家-II上为94.94%。在本地数据集中,开发的工具与风湿病专家在30张图像中的23张上达成一致(74%)。MedKnee令人满意的性能使其成为医生评估膝关节骨关节炎的有效助手。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ce/11120168/37c7962cf464/diagnostics-14-00993-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验