Suppr超能文献

用于图像分割的深度学习模型的三盲验证策略

Three-Blind Validation Strategy of Deep Learning Models for Image Segmentation.

作者信息

Larroza Andrés, Pérez-Benito Francisco Javier, Tendero Raquel, Perez-Cortes Juan Carlos, Román Marta, Llobet Rafael

机构信息

Instituto Tecnológico de la Informática, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain.

Department of Epidemiology and Evaluation, IMIM (Hospital del Mar Research Institute), Passeig Marítim 25-29, 08003 Barcelona, Spain.

出版信息

J Imaging. 2025 May 21;11(5):170. doi: 10.3390/jimaging11050170.

Abstract

Image segmentation plays a central role in computer vision applications such as medical imaging, industrial inspection, and environmental monitoring. However, evaluating segmentation performance can be particularly challenging when ground truth is not clearly defined, as is often the case in tasks involving subjective interpretation. These challenges are amplified by inter- and intra-observer variability, which complicates the use of human annotations as a reliable reference. To address this, we propose a novel validation framework-referred to as the three-blind validation strategy-that enables rigorous assessment of segmentation models in contexts where subjectivity and label variability are significant. The core idea is to have a third independent expert, blind to the labeler identities, assess a shuffled set of segmentations produced by multiple human annotators and/or automated models. This allows for the unbiased evaluation of model performance and helps uncover patterns of disagreement that may indicate systematic issues with either human or machine annotations. The primary objective of this study is to introduce and demonstrate this validation strategy as a generalizable framework for robust model evaluation in subjective segmentation tasks. We illustrate its practical implementation in a mammography use case involving dense tissue segmentation while emphasizing its potential applicability to a broad range of segmentation scenarios.

摘要

图像分割在医学成像、工业检测和环境监测等计算机视觉应用中起着核心作用。然而,当地面真值没有明确界定时,评估分割性能可能会特别具有挑战性,这在涉及主观解释的任务中经常出现。观察者之间和观察者内部的变异性加剧了这些挑战,这使得将人工标注用作可靠参考变得复杂。为了解决这个问题,我们提出了一种新颖的验证框架——称为三盲验证策略——它能够在主观性和标签变异性显著的情况下对分割模型进行严格评估。核心思想是让第三位独立专家在不知道标注者身份的情况下,评估由多个人工标注者和/或自动化模型生成的一组打乱顺序的分割结果。这允许对模型性能进行无偏评估,并有助于发现可能表明人工或机器标注存在系统性问题的分歧模式。本研究的主要目的是介绍并展示这种验证策略,作为主观分割任务中稳健模型评估的通用框架。我们在一个涉及致密组织分割的乳腺钼靶用例中说明了其实际应用,同时强调了其在广泛分割场景中的潜在适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3559/12113085/26567cbbd739/jimaging-11-00170-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验