Technol Health Care. 2022;30(S1):173-190. doi: 10.3233/THC-228017.
Breast cancer has long been one of the major global life-threatening illnesses among women. Surgery and adjuvant therapy, coupled with early detection, could save many lives. This underscores the importance of mammography, a cost-effective and accurate method for early detection. Due to the poor contrast, noise and artifacts which results in difficulty for radiologists to diagnose, Computer-Aided Diagnosis (CAD) systems are hence developed. The extraction of breast region is a fundamental and crucial preparation step for further development of CAD systems.
The proposed method aims to extract breast region accurately from mammographic images where noise is suppressed, contrast is enhanced and pectoral muscle region is removed.
This paper presents a new deep learning-based breast region extraction method that combines pre-processing methods containing noise suppression using median filter, contrast enhancement using CLAHE and semantic segmentation using Deeplab v3+ model.
The method is trained and evaluated on mini-MIAS dataset. It has also been evaluated on INbreast dataset. The results outperform those generated by other recent researches and are indicative of the capacity of the model to retain its accuracy and runtime advantage across different databases with different image resolutions.
The proposed method shows state-of-the-art performance at extracting breast region from mammographic images. Wide range of evaluation on two commonly used mammography datasets proves the ability and adaptability of the method.
乳腺癌长期以来一直是女性面临的主要全球性威胁生命的疾病之一。手术和辅助治疗,再加上早期发现,可以挽救许多生命。这凸显了乳房 X 线摄影术的重要性,它是一种具有成本效益且准确的早期检测方法。由于对比度差、噪声和伪影导致放射科医生难以诊断,因此开发了计算机辅助诊断 (CAD) 系统。从乳房 X 光图像中提取乳房区域是进一步开发 CAD 系统的基本和关键准备步骤。
该方法旨在从乳房 X 光图像中准确提取乳房区域,同时抑制噪声、增强对比度并去除胸肌区域。
本文提出了一种新的基于深度学习的乳房区域提取方法,该方法结合了预处理方法,包括使用中值滤波器抑制噪声、使用 CLAHE 增强对比度以及使用 Deeplab v3+ 模型进行语义分割。
该方法在 mini-MIAS 数据集上进行了训练和评估,并且还在 INbreast 数据集上进行了评估。结果优于其他最近的研究产生的结果,表明该模型能够在不同图像分辨率的不同数据库中保持其准确性和运行时优势。
该方法在从乳房 X 光图像中提取乳房区域方面表现出了最先进的性能。在两个常用的乳房 X 光数据集上进行了广泛的评估,证明了该方法的能力和适应性。