Suppr超能文献

利用人工智能改善皮肤颜色病理的多样性:算法开发与验证研究方案

Leveraging Artificial Intelligence to Improve the Diversity of Dermatological Skin Color Pathology: Protocol for an Algorithm Development and Validation Study.

作者信息

Rezk Eman, Eltorki Mohamed, El-Dakhakhni Wael

机构信息

School of Computational Science and Engineering, McMaster University, Hamilton, ON, Canada.

Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.

出版信息

JMIR Res Protoc. 2022 Mar 8;11(3):e34896. doi: 10.2196/34896.

Abstract

BACKGROUND

The paucity of dark skin images in dermatological textbooks and atlases is a reflection of racial injustice in medicine. The underrepresentation of dark skin images makes diagnosing skin pathology in people of color challenging. For conditions such as skin cancer, in which early diagnosis makes a difference between life and death, people of color have worse prognoses and lower survival rates than people with lighter skin tones as a result of delayed or incorrect diagnoses. Recent advances in artificial intelligence, such as deep learning, offer a potential solution that can be achieved by diversifying the mostly light-skin image repositories through generating images for darker skin tones. Thus, facilitating the development of inclusive cancer early diagnosis systems that are trained and tested on diverse images that truly represent human skin tones.

OBJECTIVE

We aim to develop and evaluate an artificial intelligence-based skin cancer early detection system for all skin tones using clinical images.

METHODS

This study consists of four phases: (1) Publicly available skin image repositories will be analyzed to quantify the underrepresentation of darker skin tones, (2) Images will be generated for the underrepresented skin tones, (3) Generated images will be extensively evaluated for realism and disease presentation with quantitative image quality assessment as well as qualitative human expert and nonexpert ratings, and (4) The images will be utilized with available light-skin images to develop a robust skin cancer early detection model.

RESULTS

This study started in September 2020. The first phase of quantifying the underrepresentation of darker skin tones was completed in March 2021. The second phase of generating the images is in progress and will be completed by March 2022. The third phase is expected to be completed by May 2022, and the final phase is expected to be completed by September 2022.

CONCLUSIONS

This work is the first step toward expanding skin tone diversity in existing image databases to address the current gap in the underrepresentation of darker skin tones. Once validated, the image bank will be a valuable resource that can potentially be utilized in physician education and in research applications. Furthermore, generated images are expected to improve the generalizability of skin cancer detection. When completed, the model will assist family physicians and general practitioners in evaluating skin lesion severity and in efficient triaging for referral to expert dermatologists. In addition, the model can assist dermatologists in diagnosing skin lesions.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/34896.

摘要

背景

皮肤病学教科书和图谱中深色皮肤图像的匮乏反映了医学领域的种族不公。深色皮肤图像的代表性不足使得对有色人种的皮肤病理进行诊断具有挑战性。对于皮肤癌等疾病,早期诊断关乎生死,由于诊断延迟或错误,有色人种的预后比肤色较浅的人更差,生存率更低。人工智能的最新进展,如深度学习,提供了一种潜在的解决方案,即通过生成深色皮肤色调的图像来使主要为浅色皮肤的图像库多样化。从而促进开发包容性的癌症早期诊断系统,该系统在真正代表人类肤色的多样化图像上进行训练和测试。

目的

我们旨在开发并评估一种基于人工智能的、使用临床图像对所有肤色进行皮肤癌早期检测的系统。

方法

本研究包括四个阶段:(1)分析公开可用的皮肤图像库,以量化深色皮肤色调代表性不足的情况;(2)为代表性不足的皮肤色调生成图像;(3)使用定量图像质量评估以及定性的人类专家和非专家评级,对生成的图像进行广泛评估,以确定其真实性和疾病呈现情况;(4)将这些图像与现有的浅色皮肤图像一起用于开发强大的皮肤癌早期检测模型。

结果

本研究于2020年9月开始。量化深色皮肤色调代表性不足情况的第一阶段已于2021年3月完成。生成图像的第二阶段正在进行中,将于2022年3月完成。第三阶段预计于2022年5月完成,最后阶段预计于2022年9月完成。

结论

这项工作是朝着扩大现有图像数据库中肤色多样性迈出的第一步,以解决目前深色皮肤色调代表性不足的差距。一旦经过验证,该图像库将成为一种宝贵的资源,有可能用于医师教育和研究应用。此外,生成的图像有望提高皮肤癌检测的通用性。完成后,该模型将协助家庭医生和全科医生评估皮肤病变的严重程度,并有效地进行分诊,以便转诊给皮肤科专家。此外,该模型还可以协助皮肤科医生诊断皮肤病变。

国际注册报告识别码(IRRID):DERR1-10.2196/34896。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2543/8941446/5c22fb0d8a3b/resprot_v11i3e34896_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验