Graduate School of Health Sciences, Hokkaido University, North-12 West-5, Kita-Ku, Sapporo, 060-0812, Japan.
Faculty of Health Sciences, Hokkaido University, North-12 West-5, Kita-Ku, Sapporo, 060-0812, Japan.
Jpn J Radiol. 2024 Oct;42(10):1187-1197. doi: 10.1007/s11604-024-01592-6. Epub 2024 May 24.
A classification-based segmentation method is proposed to quantify synovium in rheumatoid arthritis (RA) patients using a deep learning (DL) method based on time-intensity curve (TIC) analysis in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).
This retrospective study analyzed a hand MR dataset of 28 RA patients (six males, mean age 53.7 years). A researcher, under expert guidance, used in-house software to delineate regions of interest (ROIs) for hand muscles, bones, and synovitis, generating a dataset with 27,255 pixels with corresponding TICs (muscle: 11,413, bone: 8502, synovitis: 7340). One experienced musculoskeletal radiologist performed ground truth segmentation of enhanced pannus in the joint bounding box on the 10th DCE phase, or around 5 min after contrast injection. Data preprocessing included median filtering for noise reduction, phase-only correlation algorithm for motion correction, and contrast-limited adaptive histogram equalization for improved image contrast and noise suppression. TIC intensity values were normalized using zero-mean normalization. A DL model with dilated causal convolution and SELU activation function was developed for enhanced pannus segmentation, tested using leave-one-out cross-validation.
407 joint bounding boxes were manually segmented, with 129 synovitis masks. On the pixel-based level, the DL model achieved sensitivity of 85%, specificity of 98%, accuracy of 99% and precision of 84% for enhanced pannus segmentation, with a mean Dice score of 0.73. The false-positive rate for predicting cases without synovitis was 0.8%. DL-measured enhanced pannus volume strongly correlated with ground truth at both pixel-based (r = 0.87, p < 0.001) and patient-based levels (r = 0.84, p < 0.001). Bland-Altman analysis showed the mean difference for hand joints at the pixel-based and patient-based levels were -9.46 mm and -50.87 mm, respectively.
Our DL-based DCE-MRI TIC shape analysis has the potential for automatic segmentation and quantification of enhanced synovium in the hands of RA patients.
提出了一种基于分类的分割方法,通过基于时间-强度曲线(TIC)分析的深度学习(DL)方法对类风湿关节炎(RA)患者的滑膜进行量化,该方法基于动态对比增强磁共振成像(DCE-MRI)。
本回顾性研究分析了 28 例 RA 患者手部磁共振数据集(6 例男性,平均年龄 53.7 岁)。一名研究人员在专家指导下,使用内部软件对手部肌肉、骨骼和滑膜炎进行感兴趣区域(ROI)的勾画,生成了一组包含 27255 个像素的数据集,这些像素对应于 TIC(肌肉:11413,骨骼:8502,滑膜炎:7340)。一名经验丰富的肌肉骨骼放射科医生在第 10 个 DCE 期(即造影剂注射后约 5 分钟)或在关节边界框内对增强性血管翳进行了基于地面实况的分割。数据预处理包括中值滤波以降低噪声、基于相位的相关算法进行运动校正、对比度限制自适应直方图均衡化以提高图像对比度和抑制噪声。使用零均值归一化对 TIC 强度值进行归一化。使用带有扩张因果卷积和 SELU 激活函数的 DL 模型进行增强性血管翳分割,使用留一交叉验证进行测试。
手动分割了 407 个关节边界框,有 129 个滑膜炎掩模。在像素水平上,DL 模型对增强性血管翳的分割在敏感性、特异性、准确性和精确性方面的结果分别为 85%、98%、99%和 84%,平均 Dice 评分 0.73。对于预测无滑膜炎的病例,假阳性率为 0.8%。DL 测量的增强性血管翳体积在像素和患者水平上均与地面实况高度相关(像素水平:r=0.87,p<0.001;患者水平:r=0.84,p<0.001)。Bland-Altman 分析显示,在像素和患者水平上,手部关节的平均差异分别为-9.46mm 和-50.87mm。
基于我们的 DL 的 DCE-MRI TIC 形状分析有可能实现 RA 患者手部增强滑膜的自动分割和量化。