Zhang Xuejun, Chen Shengxiang, Zhang Pengfei, Wang Chun, Wang Qibo, Zhou Xiangrong
School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China.
Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China.
Bioengineering (Basel). 2024 May 13;11(5):485. doi: 10.3390/bioengineering11050485.
Currently, staging the degree of liver fibrosis predominantly relies on liver biopsy, a method fraught with potential risks, such as bleeding and infection. With the rapid development of medical imaging devices, quantification of liver fibrosis through image processing technology has become feasible. Stacking technology is one of the effective ensemble techniques for potential usage, but precise tuning to find the optimal configuration manually is challenging. Therefore, this paper proposes a novel EVO-MS model-a multiple stacking ensemble learning model optimized by the energy valley optimization (EVO) algorithm to select most informatic features for fibrosis quantification. Liver contours are profiled from 415 biopsied proven CT cases, from which 10 shape features are calculated and inputted into a Support Vector Machine (SVM) classifier to generate the accurate predictions, then the EVO algorithm is applied to find the optimal parameter combination to fuse six base models: K-Nearest Neighbors (KNNs), Decision Tree (DT), Naive Bayes (NB), Extreme Gradient Boosting (XGB), Gradient Boosting Decision Tree (GBDT), and Random Forest (RF), to create a well-performing ensemble model. Experimental results indicate that selecting 3-5 feature parameters yields satisfactory results in classification, with features such as the contour roundness non-uniformity (Rmax), maximum peak height of contour (Rp), and maximum valley depth of contour (Rm) significantly influencing classification accuracy. The improved EVO algorithm, combined with a multiple stacking model, achieves an accuracy of 0.864, a precision of 0.813, a sensitivity of 0.912, a specificity of 0.824, and an F1-score of 0.860, which demonstrates the effectiveness of our EVO-MS model in staging the degree of liver fibrosis.
目前,肝纤维化程度的分期主要依赖肝活检,这是一种存在出血和感染等潜在风险的方法。随着医学成像设备的快速发展,通过图像处理技术对肝纤维化进行量化已变得可行。堆叠技术是一种有潜在用途的有效集成技术,但手动精确调整以找到最优配置具有挑战性。因此,本文提出了一种新颖的EVO-MS模型——一种通过能量谷优化(EVO)算法优化的多重堆叠集成学习模型,用于选择最具信息性的特征进行纤维化量化。从415例经活检证实的CT病例中勾勒出肝脏轮廓,从中计算出10个形状特征并输入支持向量机(SVM)分类器以生成准确预测,然后应用EVO算法找到最优参数组合,以融合六个基础模型:K近邻(KNN)、决策树(DT)、朴素贝叶斯(NB)、极端梯度提升(XGB)、梯度提升决策树(GBDT)和随机森林(RF),从而创建一个性能良好的集成模型。实验结果表明,选择3至5个特征参数在分类中能产生令人满意的结果,轮廓圆度不均匀性(Rmax)、轮廓最大峰值高度(Rp)和轮廓最大谷深度(Rm)等特征对分类准确率有显著影响。改进的EVO算法与多重堆叠模型相结合,实现了0.864的准确率、0.813的精确率、0.912的灵敏度、0.824的特异性和0.860的F1分数,这证明了我们的EVO-MS模型在肝纤维化程度分期中的有效性。