Suppr超能文献

基于集成学习的卷积神经网络的锻炼分类。

Workout Classification Using a Convolutional Neural Network in Ensemble Learning.

机构信息

Department of Software Convergence Engineering, Inha University, Incheon 22212, Republic of Korea.

出版信息

Sensors (Basel). 2024 May 15;24(10):3133. doi: 10.3390/s24103133.

Abstract

To meet the increased demand for home workouts owing to the COVID-19 pandemic, this study proposes a new approach to real-time exercise posture classification based on the convolutional neural network (CNN) in an ensemble learning system. By utilizing MediaPipe, the proposed system extracts the joint coordinates and angles of the human body, which the CNN uses to learn the complex patterns of various exercises. Additionally, this new approach enhances classification performance by combining predictions from multiple image frames using an ensemble learning method. Infinity AI's Fitness Basic Dataset is employed for validation, and the experiments demonstrate high accuracy in classifying exercises such as arm raises, squats, and overhead presses. The proposed model demonstrated its ability to effectively classify exercise postures in real time, achieving high rates in accuracy (92.12%), precision (91.62%), recall (91.64%), and F1 score (91.58%). This indicates its potential application in personalized fitness recommendations and physical therapy services, showcasing the possibility for beneficial use in these fields.

摘要

为满足 COVID-19 大流行期间人们对家庭锻炼的需求增加,本研究提出了一种新的基于集成学习系统的卷积神经网络 (CNN) 的实时运动姿势分类方法。该系统利用 MediaPipe 提取人体的关节坐标和角度,CNN 利用这些坐标和角度来学习各种运动的复杂模式。此外,该新方法通过使用集成学习方法结合来自多个图像帧的预测来提高分类性能。采用 Infinity AI 的 Fitness Basic Dataset 进行验证,实验表明该方法在分类手臂抬高、深蹲和推举等运动方面具有很高的准确性。该模型能够有效地实时分类运动姿势,在准确性 (92.12%)、精度 (91.62%)、召回率 (91.64%) 和 F1 得分 (91.58%) 方面都取得了很高的分数。这表明它在个性化健身推荐和物理治疗服务中有潜在的应用,展示了在这些领域有益使用的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33ee/11124794/f997076a8a9d/sensors-24-03133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验