Suppr超能文献

智能物理疗法:利用 PoseNet 和集成模型提升基于手臂的运动分类。

Smart Physiotherapy: Advancing Arm-Based Exercise Classification with PoseNet and Ensemble Models.

机构信息

Institute of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Punjab, Pakistan.

Faculty of Computing, Riphah International University, 2 KM McDonald's Lahore Multan Bypass Road, Sahiwal 5700, Punjab, Pakistan.

出版信息

Sensors (Basel). 2024 Sep 29;24(19):6325. doi: 10.3390/s24196325.

Abstract

Telephysiotherapy has emerged as a vital solution for delivering remote healthcare, particularly in response to global challenges such as the COVID-19 pandemic. This study seeks to enhance telephysiotherapy by developing a system capable of accurately classifying physiotherapeutic exercises using PoseNet, a state-of-the-art pose estimation model. A dataset was collected from 49 participants (35 males, 14 females) performing seven distinct exercises, with twelve anatomical landmarks then extracted using the Google MediaPipe library. Each landmark was represented by four features, which were used for classification. The core challenge addressed in this research involves ensuring accurate and real-time exercise classification across diverse body morphologies and exercise types. Several tree-based classifiers, including Random Forest, Extra Tree Classifier, XGBoost, LightGBM, and Hist Gradient Boosting, were employed. Furthermore, two novel ensemble models called RandomLightHist Fusion and StackedXLightRF are proposed to enhance classification accuracy. The RandomLightHist Fusion model achieved superior accuracy of 99.6%, demonstrating the system's robustness and effectiveness. This innovation offers a practical solution for providing real-time feedback in telephysiotherapy, with potential to improve patient outcomes through accurate monitoring and assessment of exercise performance.

摘要

远程物理治疗已成为提供远程医疗保健的重要解决方案,特别是在应对全球挑战(如 COVID-19 大流行)时。本研究旨在通过开发一种能够使用 PoseNet(一种先进的姿势估计模型)准确分类物理治疗运动的系统来增强远程物理治疗。从 49 名参与者(35 名男性,14 名女性)中收集了一个数据集,他们执行了七种不同的运动,然后使用 Google MediaPipe 库提取了十二个解剖学标志点。每个标志点由四个特征表示,用于分类。本研究中解决的核心挑战涉及确保在不同体型和运动类型下进行准确和实时的运动分类。使用了几种基于树的分类器,包括随机森林、极端随机树分类器、XGBoost、LightGBM 和梯度提升决策树。此外,还提出了两种名为 RandomLightHist Fusion 和 StackedXLightRF 的新型集成模型,以提高分类准确性。RandomLightHist Fusion 模型实现了 99.6%的卓越准确性,证明了系统的稳健性和有效性。这项创新为远程物理治疗提供实时反馈提供了一种实用的解决方案,通过准确监测和评估运动表现,有可能改善患者的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验