Suppr超能文献

验证方法学如何影响人体活动识别移动系统。

How Validation Methodology Influences Human Activity Recognition Mobile Systems.

机构信息

Institute of Computing, Federal University of Amazonas, Manaus 69067-005, Brazil.

出版信息

Sensors (Basel). 2022 Mar 18;22(6):2360. doi: 10.3390/s22062360.

Abstract

In this article, we introduce explainable methods to understand how Human Activity Recognition (HAR) mobile systems perform based on the chosen validation strategies. Our results introduce a new way to discover potential bias problems that overestimate the prediction accuracy of an algorithm because of the inappropriate choice of validation methodology. We show how the SHAP (Shapley additive explanations) framework, used in literature to explain the predictions of any machine learning model, presents itself as a tool that can provide graphical insights into how human activity recognition models achieve their results. Now it is possible to analyze which features are important to a HAR system in each validation methodology in a simplified way. We not only demonstrate that the validation procedure -folds cross-validation (-CV), used in most works to evaluate the expected error in a HAR system, can overestimate by about 13% the prediction accuracy in three public datasets but also choose a different feature set when compared with the universal model. Combining explainable methods with machine learning algorithms has the potential to help new researchers look inside the decisions of the machine learning algorithms, avoiding most times the overestimation of prediction accuracy, understanding relations between features, and finding bias before deploying the system in real-world scenarios.

摘要

在本文中,我们介绍了可解释的方法,以了解基于所选验证策略的人类活动识别 (HAR) 移动系统的性能。我们的结果介绍了一种新的方法,可以发现潜在的偏差问题,这些问题由于验证方法的不当选择而高估了算法的预测准确性。我们展示了 SHAP(Shapley 加法解释)框架如何在文献中用于解释任何机器学习模型的预测,它本身就是一种工具,可以提供有关人类活动识别模型如何获得结果的图形见解。现在可以以简化的方式分析在每个验证方法中对 HAR 系统很重要的特征。我们不仅证明了在大多数工作中用于评估 HAR 系统中预期误差的验证过程——交叉验证(-CV),在三个公共数据集上可以高估约 13%的预测准确性,而且与通用模型相比,还选择了不同的特征集。将可解释方法与机器学习算法相结合,有可能帮助新研究人员深入了解机器学习算法的决策,避免多次高估预测准确性,理解特征之间的关系,并在实际场景中部署系统之前发现偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8561/8954513/f05e84ad5941/sensors-22-02360-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验