Suppr超能文献

自然语言处理在临床实践中识别和特征化脊柱关节炎。

Natural language processing to identify and characterize spondyloarthritis in clinical practice.

机构信息

Savana Research S.L, Madrid, Spain

Rheumatology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain.

出版信息

RMD Open. 2024 May 24;10(2):e004302. doi: 10.1136/rmdopen-2024-004302.

Abstract

OBJECTIVE

This study aims to use a novel technology based on natural language processing (NLP) to extract clinical information from electronic health records (EHRs) to characterise the clinical profile of patients diagnosed with spondyloarthritis (SpA) at a large-scale hospital.

METHODS

An observational, retrospective analysis was conducted on EHR data from all patients with SpA (including psoriatic arthritis (PsA)) at Hospital Universitario La Paz, between 2020 and 2022. Data were collected using Savana Manager, an NLP-based system, enabling the extraction of information from unstructured, free-text EHRs. Variables analysed included demographic data, SpA subtypes, comorbidities and treatments. The performance of the technology in detecting SpA clinical entities was evaluated through precision, recall and F-1 score metrics.

RESULTS

From a hospital population of 639 474 patients, 4337 (0.7%) patients had a diagnosis of SpA or their subtypes in their EHR. The population predominantly comprised men (55.3%) with a mean age of 50.9 years. Peripheral SpA (including PsA) was reported in 31.6%, axial SpA in 20.9%, both axial and peripheral SpA in 3.7%, while 43.7% of patients did not have the SpA subtype reported. Common comorbidities included hypertension (25.0%), dyslipidaemia (22.2%) and diabetes mellitus (15.5%). The use of conventional disease-modifying antirheumatic drugs (csDMARDs) and biological DMARDs (bDMARDs) was documented, with methotrexate (25.3% of patients) being the most used csDMARDs and adalimumab (10.6% of patients) the most used bDMARD. The NLP technology demonstrated high precision and recall, with all the assessed F-1 score values over 0.80, indicating reliable data extraction.

CONCLUSION

The application of NLP technology facilitated the characterisation of the SpA patient profile, including demographics, clinical features, comorbidities and treatments. This study supports the utility of NLP in enhancing the understanding of SpA and suggests its potential for improving patient management by extracting meaningful information from unstructured EHR data.

摘要

目的

本研究旨在利用一种基于自然语言处理(NLP)的新技术,从电子健康记录(EHR)中提取临床信息,以描述在一家大型医院就诊的强直性脊柱炎(SpA)患者的临床特征。

方法

对 2020 年至 2022 年期间在拉帕兹大学医院就诊的所有 SpA(包括银屑病关节炎(PsA))患者的 EHR 数据进行了一项观察性、回顾性分析。数据是使用基于 NLP 的 Savana Manager 系统收集的,该系统能够从非结构化、自由文本的 EHR 中提取信息。分析的变量包括人口统计学数据、SpA 亚型、合并症和治疗方法。通过精确率、召回率和 F1 评分指标评估该技术检测 SpA 临床实体的性能。

结果

在 639474 名医院患者中,有 4337 名(0.7%)患者的 EHR 中诊断为 SpA 或其亚型。该人群主要由男性(55.3%)组成,平均年龄为 50.9 岁。外周 SpA(包括 PsA)占 31.6%,中轴 SpA 占 20.9%,同时存在中轴和外周 SpA 占 3.7%,而 43.7%的患者未报告 SpA 亚型。常见合并症包括高血压(25.0%)、血脂异常(22.2%)和糖尿病(15.5%)。记录了常规疾病修饰抗风湿药物(csDMARDs)和生物 DMARDs(bDMARDs)的使用情况,最常使用的 csDMARDs 是甲氨蝶呤(25.3%的患者),最常使用的 bDMARDs 是阿达木单抗(10.6%的患者)。NLP 技术表现出较高的精确率和召回率,所有评估的 F1 评分值均高于 0.80,表明数据提取可靠。

结论

NLP 技术的应用促进了 SpA 患者特征的描述,包括人口统计学、临床特征、合并症和治疗方法。本研究支持 NLP 在增强对 SpA 的理解方面的效用,并表明其通过从非结构化 EHR 数据中提取有意义的信息,有可能改善患者管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcb9/11129039/624504e0a2cc/rmdopen-2024-004302f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验