Suppr超能文献

BrainDAS:用于多站点脑网络分析的结构感知域自适应网络。

BrainDAS: Structure-aware domain adaptation network for multi-site brain network analysis.

机构信息

Computer Science and Engineering, Northeastern University, Shenyang, China.

Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.

出版信息

Med Image Anal. 2024 Aug;96:103211. doi: 10.1016/j.media.2024.103211. Epub 2024 May 22.

Abstract

In the medical field, datasets are mostly integrated across sites due to difficult data acquisition and insufficient data at a single site. The domain shift problem caused by the heterogeneous distribution among multi-site data makes autism spectrum disorder (ASD) hard to identify. Recently, domain adaptation has received considerable attention as a promising solution. However, domain adaptation on graph data like brain networks has not been fully studied. It faces two major challenges: (1) complex graph structure; and (2) multiple source domains. To overcome the issues, we propose an end-to-end structure-aware domain adaptation framework for brain network analysis (BrainDAS) using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed approach contains two stages: supervision-guided multi-site graph domain adaptation with dynamic kernel generation and graph classification with attention-based graph pooling. We evaluate our BrainDAS on a public dataset provided by Autism Brain Imaging Data Exchange (ABIDE) which includes 871 subjects from 17 different sites, surpassing state-of-the-art algorithms in several different evaluation settings. Furthermore, our promising results demonstrate the interpretability and generalization of the proposed method. Our code is available at https://github.com/songruoxian/BrainDAS.

摘要

在医学领域,由于数据获取困难和单个站点的数据不足,数据集大多在站点之间进行整合。由于多站点数据的异质分布导致的域迁移问题,使得自闭症谱系障碍(ASD)难以识别。最近,域自适应作为一种很有前途的解决方案受到了相当多的关注。然而,像脑网络这样的图数据的域自适应还没有得到充分的研究。它面临两个主要挑战:(1)复杂的图结构;(2)多个源域。为了克服这些问题,我们提出了一种使用静息态功能磁共振成像(rs-fMRI)的脑网络分析的端到端结构感知域自适应框架(BrainDAS)。所提出的方法包含两个阶段:带有动态核生成的监督指导的多站点图域自适应和基于注意力的图池化的图分类。我们在由自闭症脑成像数据交换(ABIDE)提供的公共数据集上评估了我们的 BrainDAS,该数据集包含来自 17 个不同站点的 871 个主体,在几个不同的评估设置中超过了最先进的算法。此外,我们有希望的结果表明了所提出的方法的可解释性和泛化能力。我们的代码可在 https://github.com/songruoxian/BrainDAS 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验