文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Inhalable metal-organic framework-mediated cuproptosis combined with PD-L1 checkpoint blockade for lung metastasis synergistic immunotherapy.

作者信息

Yan Chongzheng, Liu Ying, Zhao Guozhi, Yang Huatian, Lv Huaiyou, Li Genju, Li Yuhan, Fu Yaqing, Sun Fengqin, Feng Yafei, Li Yizhe, Zhao Zhongxi

机构信息

Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China.

Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

出版信息

Acta Pharm Sin B. 2024 May;14(5):2281-2297. doi: 10.1016/j.apsb.2024.01.017. Epub 2024 Feb 6.


DOI:10.1016/j.apsb.2024.01.017
PMID:38799628
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11119570/
Abstract

Cuproptosis shows enormous application prospects in lung metastasis treatment. However, the glycolysis, Cu efflux mechanisms, and insufficient lung drug accumulation severely restrict cuproptosis efficacy. Herein, an inhalable poly (2-(-oxide-,-diethylamino)ethyl methacrylate) (OPDEA)-coated copper-based metal-organic framework encapsulating pyruvate dehydrogenase kinase 1 siRNA (siPDK) is constructed for mediating cuproptosis and subsequently promoting lung metastasis immunotherapy, namely OMP. After inhalation, OMP shows highly efficient lung accumulation and long-term retention, ascribing to the OPDEA-mediated pulmonary mucosa penetration. Within tumor cells, OMP is degraded to release Cu under acidic condition, which will be reduced to toxic Cu to induce cuproptosis under glutathione (GSH) regulation. Meanwhile, siPDK released from OMP inhibits intracellular glycolysis and adenosine-5'-triphosphate (ATP) production, then blocking the Cu efflux protein ATP7B, thereby rendering tumor cells more sensitive to OMP-mediated cuproptosis. Moreover, OMP-mediated cuproptosis triggers immunogenic cell death (ICD) to promote dendritic cells (DCs) maturation and CD8 T cells infiltration. Notably, OMP-induced cuproptosis up-regulates membrane-associated programmed cell death-ligand 1 (PD-L1) expression and induces soluble PD-L1 secretion, and thus synergizes with anti-PD-L1 antibodies (aPD-L1) to reprogram immunosuppressive tumor microenvironment, finally yielding improved immunotherapy efficacy. Overall, OMP may serve as an efficient inhalable nanoplatform and afford preferable efficacy against lung metastasis through inducing cuproptosis and combining with aPD-L1.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/0c4a57e1884f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/7cff45daa50b/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/b8767fd0198d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/90088ccf340e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/fa1e754e1fa1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/cdb30c9d4bbd/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/e7bf8b8ba76b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/ac5430763096/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/0c4a57e1884f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/7cff45daa50b/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/b8767fd0198d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/90088ccf340e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/fa1e754e1fa1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/cdb30c9d4bbd/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/e7bf8b8ba76b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/ac5430763096/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19be/11119570/0c4a57e1884f/gr7.jpg

相似文献

[1]
Inhalable metal-organic framework-mediated cuproptosis combined with PD-L1 checkpoint blockade for lung metastasis synergistic immunotherapy.

Acta Pharm Sin B. 2024-5

[2]
Inhalable nanoparticles with enhanced cuproptosis and cGAS-STING activation for synergistic lung metastasis immunotherapy.

Acta Pharm Sin B. 2024-8

[3]
Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.

Acta Biomater. 2023-2

[4]
A biomimetic cuproptosis amplifier for targeted NIR-II fluorescence/photoacoustic imaging-guided synergistic NIR-II photothermal immunotherapy.

Biomaterials. 2024-3

[5]
Elesclomol Loaded Copper Oxide Nanoplatform Triggers Cuproptosis to Enhance Antitumor Immunotherapy.

Adv Sci (Weinh). 2024-5

[6]
Biomimetic gold nanocages incorporating copper-human serum albumin for tumor immunotherapy via cuproptosis-lactate regulation.

J Control Release. 2024-8

[7]
Glutathione-Scavenging Celastrol-Cu Nanoparticles Induce Self-Amplified Cuproptosis for Augmented Cancer Immunotherapy.

Adv Mater. 2024-8

[8]
Copper(II)-Based Nano-Regulator Correlates Cuproptosis Burst and Sequential Immunogenic Cell Death for Synergistic Cancer Immunotherapy.

Biomater Res. 2024-6-27

[9]
Copper-coordinated nanoassemblies based on photosensitizer-chemo prodrugs and checkpoint inhibitors for enhanced apoptosis-cuproptosis and immunotherapy.

Acta Biomater. 2024-2

[10]
Copper Deposition in Polydopamine Nanostructure to Promote Cuproptosis by Catalytically Inhibiting Copper Exporters of Tumor Cells for Cancer Immunotherapy.

Small. 2024-7

引用本文的文献

[1]
Programmed Cell Death in Cancer.

MedComm (2020). 2025-8-31

[2]
Engineered anti-cancer nanomedicine for synergistic cuproptosis-immunotherapy.

Mater Today Bio. 2025-7-29

[3]
Tertiary Amine Oxide-Containing Zwitterionic Polymers: From Material Design to Biomedical Applications.

Pharmaceutics. 2025-6-27

[4]
From mechanism to application: programmed cell death pathways in nanomedicine-driven cancer therapies.

Bioact Mater. 2025-7-1

[5]
A thermosensitive hydrogel with synergistic stromal targeting and antitumor immunity modulation for pancreatic cancer immunotherapy.

Mater Today Bio. 2025-5-20

[6]
Novel Pt@PCN-Cu-induced cuproptosis amplifies αPD-L1 immunotherapy in pancreatic ductal adenocarcinoma through mitochondrial HK2-mediated PD-L1 upregulation.

J Exp Clin Cancer Res. 2025-5-17

[7]
The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer.

Signal Transduct Target Ther. 2025-5-9

[8]
Nano drug delivery systems for advanced immune checkpoint blockade therapy.

Theranostics. 2025-4-13

[9]
A Copper-Based Photothermal-Responsive Nanoplatform Reprograms Tumor Immunogenicity via Self-Amplified Cuproptosis for Synergistic Cancer Therapy.

Adv Sci (Weinh). 2025-5

[10]
Multi-omics reveals the alleviating effect of berberine on ulcerative colitis through modulating the gut microbiome and bile acid metabolism in the gut-liver axis.

Front Pharmacol. 2024-10-24

本文引用的文献

[1]
Type-I AIE Photosensitizer Loaded Biomimetic System Boosting Cuproptosis to Inhibit Breast Cancer Metastasis and Rechallenge.

ACS Nano. 2023-6-13

[2]
An Intelligent Cell-Derived Nanorobot Bridges Synergistic Crosstalk Between Sonodynamic Therapy and Cuproptosis to Promote Cancer Treatment.

Nano Lett. 2023-4-12

[3]
Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD-L1 for Enhanced Cancer Immunotherapy.

Adv Mater. 2023-6

[4]
Inhalable GSH-Triggered Nanoparticles to Treat Commensal Bacterial Infection in Lung Tumors.

ACS Nano. 2023-3-28

[5]
Inhalable Biomineralized Liposomes for Cyclic Ca-Burst-Centered Endoplasmic Reticulum Stress Enhanced Lung Cancer Ferroptosis Therapy.

ACS Nano. 2023-3-28

[6]
Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy.

Acta Pharm Sin B. 2022-12

[7]
Tumor Microenvironment-Activable Manganese-Boosted Catalytic Immunotherapy Combined with PD-1 Checkpoint Blockade.

ACS Nano. 2022-12-27

[8]
Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy.

Acta Pharm Sin B. 2022-9

[9]
Tumor immunosuppressive microenvironment modulating hydrogels for second near-infrared photothermal-immunotherapy of cancer.

Mater Today Bio. 2022-9-5

[10]
Mitochondria-Targeting Polymer Micelle of Dichloroacetate Induced Pyroptosis to Enhance Osteosarcoma Immunotherapy.

ACS Nano. 2022-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索