Suppr超能文献

解析重症哮喘中性粒细胞胞外陷阱的分子格局:生物标志物和分子簇的鉴定

Unraveling the Molecular Landscape of Neutrophil Extracellular Traps in Severe Asthma: Identification of Biomarkers and Molecular Clusters.

作者信息

Shen Kunlu, Lin Jiangtao

机构信息

National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.

Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.

出版信息

Mol Biotechnol. 2025 May;67(5):1852-1866. doi: 10.1007/s12033-024-01164-z. Epub 2024 May 27.

Abstract

Neutrophil extracellular traps (NETs) play a central role in chronic airway diseases. However, the precise genetic basis linking NETs to the development of severe asthma remains elusive. This study aims to unravel the molecular characterization of NET-related genes (NRGs) in severe asthma and to reliably identify relevant molecular clusters and biomarkers. We analyzed RNA-seq data from the Gene Expression Omnibus database. Interaction analysis revealed fifty differentially expressed NRGs (DE-NRGs). Subsequently, the non-negative matrix factorization algorithm categorized samples from severe asthma patients. A machine learning algorithm then identified core NRGs that were highly associated with severe asthma. DE-NRGs were correlated and subjected to protein-protein interaction analysis. Unsupervised consensus clustering of the core gene expression profiles delineated two distinct clusters (C1 and C2) characterizing severe asthma. Functional enrichment highlighted immune-related pathways in the C2 cluster. Core gene selection included the Boruta algorithm, support vector machine, and least absolute contraction and selection operator algorithms. Diagnostic performance was assessed by receiver operating characteristic curves. This study addresses the molecular characterization of NRGs in adult severe asthma, revealing distinct clusters based on DE-NRGs. Potential biomarkers (TIMP1 and NFIL3) were identified that may be important for early diagnosis and treatment of severe asthma.

摘要

中性粒细胞胞外诱捕网(NETs)在慢性气道疾病中起核心作用。然而,将NETs与重度哮喘发展联系起来的确切遗传基础仍不清楚。本研究旨在揭示重度哮喘中NET相关基因(NRGs)的分子特征,并可靠地识别相关分子簇和生物标志物。我们分析了来自基因表达综合数据库的RNA测序数据。相互作用分析揭示了50个差异表达的NRGs(DE-NRGs)。随后,非负矩阵分解算法对重度哮喘患者的样本进行了分类。然后,一种机器学习算法识别出与重度哮喘高度相关的核心NRGs。对DE-NRGs进行相关性分析并进行蛋白质-蛋白质相互作用分析。对核心基因表达谱进行无监督一致性聚类,划分出两个表征重度哮喘的不同簇(C1和C2)。功能富集突出了C2簇中与免疫相关的通路。核心基因选择包括博鲁塔算法、支持向量机和最小绝对收缩和选择算子算法。通过受试者工作特征曲线评估诊断性能。本研究探讨了成人重度哮喘中NRGs的分子特征,基于DE-NRGs揭示了不同的簇。识别出了可能对重度哮喘的早期诊断和治疗很重要的潜在生物标志物(TIMP1和NFIL3)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验