Suppr超能文献

代谢组学衍生的年龄相关性黄斑变性(AMD)内型:朝着确定疾病亚组的方向迈进。

Metabolomic-derived endotypes of age-related macular degeneration (AMD): a step towards identification of disease subgroups.

机构信息

Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

出版信息

Sci Rep. 2024 May 27;14(1):12145. doi: 10.1038/s41598-024-59045-z.

Abstract

Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, with a complex pathophysiology and phenotypic diversity. Here, we apply Similarity Network Fusion (SNF) to cluster AMD patients into putative metabolomics-derived endotypes. Using a discovery cohort of 163 AMD patients from Boston, US, and a validation cohort of 214 patients from Coimbra, Portugal, we identified four distinct metabolomics-derived endotypes with varying retinal structural and functional characteristics, confirmed across both cohorts. Patients clustered into Endotype 1 exhibited a milder form of AMD and were characterized by low levels of amino acids in specific metabolic pathways. Meanwhile, patients clustered into both Endotype 3 and 4 were associated with more severe AMD and exhibited low levels of fatty acid metabolites and elevated levels of sphingomyelins and fatty acid metabolites, respectively. These preliminary findings indicate that metabolomics-derived endotyping may offer a refined strategy for categorizing AMD patients based on their specific pathophysiological underpinnings, rather than relying solely on traditional observational clinical indicators.

摘要

年龄相关性黄斑变性(AMD)是全球致盲的主要原因,其发病机制复杂,表型多样。在这里,我们应用相似网络融合(SNF)将 AMD 患者聚类为假定的代谢组学衍生内型。我们使用来自美国波士顿的 163 名 AMD 患者的发现队列和来自葡萄牙科英布拉的 214 名患者的验证队列,在两个队列中均确认了具有不同视网膜结构和功能特征的四个不同的代谢组学衍生内型。聚类为内型 1 的患者表现出较轻的 AMD 形式,其特征是特定代谢途径中的氨基酸水平较低。同时,聚类为内型 3 和内型 4 的患者与更严重的 AMD 相关,其特征分别为脂肪酸代谢物水平较低和鞘磷脂和脂肪酸代谢物水平升高。这些初步发现表明,代谢组学衍生的内型分类可能为基于特定病理生理基础对 AMD 患者进行分类提供了一种更精细的策略,而不仅仅依赖于传统的观察性临床指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eeb/11130126/56564d64888c/41598_2024_59045_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验