Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
J Exp Biol. 2024 May 15;227(10). doi: 10.1242/jeb.247046. Epub 2024 May 29.
Delineating developmental events is central to experimental research using early life stages, permitting widespread identification of changes in event timing between species and environments. Yet, identifying developmental events is incredibly challenging, limiting the scale, reproducibility and throughput of using early life stages in experimental biology. We introduce Dev-ResNet, a small and efficient 3D convolutional neural network capable of detecting developmental events characterised by both spatial and temporal features, such as the onset of cardiac function and radula activity. We demonstrate the efficacy of Dev-ResNet using 10 diverse functional events throughout the embryonic development of the great pond snail, Lymnaea stagnalis. Dev-ResNet was highly effective in detecting the onset of all events, including the identification of thermally induced decoupling of event timings. Dev-ResNet has broad applicability given the ubiquity of bioimaging in developmental biology, and the transferability of deep learning, and so we provide comprehensive scripts and documentation for applying Dev-ResNet to different biological systems.
阐明发育事件是使用生命早期阶段进行实验研究的核心,允许广泛识别物种和环境之间事件时间变化。然而,识别发育事件极具挑战性,限制了在实验生物学中使用生命早期阶段的规模、可重复性和通量。我们引入了 Dev-ResNet,这是一种小型而高效的 3D 卷积神经网络,能够检测具有时空特征的发育事件,例如心脏功能和齿舌活动的开始。我们使用大池塘蜗牛 Lymnaea stagnalis 的胚胎发育过程中的 10 个不同的功能事件来证明 Dev-ResNet 的功效。Dev-ResNet 在检测所有事件的开始时非常有效,包括识别热诱导的事件时间解耦。鉴于生物成像在发育生物学中的普及性以及深度学习的可转移性,Dev-ResNet 具有广泛的适用性,因此我们提供了全面的脚本和文档,用于将 Dev-ResNet 应用于不同的生物系统。