Fiorin Alessio, López Pablo Carlos, Lejeune Marylène, Hamza Siraj Ameer, Della Mea Vincenzo
Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
J Imaging Inform Med. 2024 Dec;37(6):2996-3008. doi: 10.1007/s10278-024-01043-8. Epub 2024 May 28.
The field of immunology is fundamental to our understanding of the intricate dynamics of the tumor microenvironment. In particular, tumor-infiltrating lymphocyte (TIL) assessment emerges as essential aspect in breast cancer cases. To gain comprehensive insights, the quantification of TILs through computer-assisted pathology (CAP) tools has become a prominent approach, employing advanced artificial intelligence models based on deep learning techniques. The successful recognition of TILs requires the models to be trained, a process that demands access to annotated datasets. Unfortunately, this task is hampered not only by the scarcity of such datasets, but also by the time-consuming nature of the annotation phase required to create them. Our review endeavors to examine publicly accessible datasets pertaining to the TIL domain and thereby become a valuable resource for the TIL community. The overall aim of the present review is thus to make it easier to train and validate current and upcoming CAP tools for TIL assessment by inspecting and evaluating existing publicly available online datasets.
免疫学领域对于我们理解肿瘤微环境的复杂动态至关重要。特别是,肿瘤浸润淋巴细胞(TIL)评估已成为乳腺癌病例中的一个重要方面。为了获得全面的见解,通过计算机辅助病理学(CAP)工具对TIL进行量化已成为一种突出的方法,该方法采用基于深度学习技术的先进人工智能模型。TIL的成功识别需要对模型进行训练,这一过程需要使用带注释的数据集。不幸的是,这项任务不仅受到此类数据集稀缺性的阻碍,还受到创建这些数据集所需注释阶段耗时性质的影响。我们的综述致力于研究与TIL领域相关的可公开获取的数据集,从而成为TIL社区的宝贵资源。因此,本综述的总体目标是通过检查和评估现有的公开在线数据集,使训练和验证当前及即将出现的用于TIL评估的CAP工具更加容易。