Bálint András, Rummel Christian, Caversaccio Marco, Weder Stefan
University of Bern, ARTORG Center for Biomedical Engineering Research, Hearing Research Laboratory, Bern, Switzerland.
Inselspital, Bern University Hospital, University of Bern, Department of ENT - Head and Neck Surgery, Bern, Switzerland.
Neurophotonics. 2024 Apr;11(2):024309. doi: 10.1117/1.NPh.11.2.024309. Epub 2024 May 26.
Accurate spatial registration of probes (e.g., optodes and electrodes) for measurement of brain activity is a crucial aspect in many neuroimaging modalities. It may increase measurement precision and enable the transition from channel-based calculations to volumetric representations.
This technical note evaluates the efficacy of a commercially available infrared three-dimensional (3D) scanner under actual experimental (or clinical) conditions and provides guidelines for its use.
We registered probe positions using an infrared 3D scanner and validated them against magnetic resonance imaging (MRI) scans on five volunteer participants.
Our analysis showed that with standard cap fixation, the average Euclidean distance of probe position among subjects could reach up to 43 mm, with an average distance of 15.25 mm [standard deviation (SD) = 8.0]. By contrast, the average distance between the infrared 3D scanner and the MRI-acquired positions was 5.69 mm (SD = 1.73), while the average difference between consecutive infrared 3D scans was 3.43 mm (SD = 1.62). The inter-optode distance, which was fixed at 30 mm, was measured as 29.28 mm (SD = 1.12) on the MRI and 29.43 mm (SD = 1.96) on infrared 3D scans. Our results demonstrate the high accuracy and reproducibility of the proposed spatial registration method, making it suitable for both functional near-infrared spectroscopy and electroencephalogram studies.
The 3D infrared scanning technique for spatial registration of probes provides economic efficiency, simplicity, practicality, repeatability, and high accuracy, with potential benefits for a range of neuroimaging applications. We provide practical guidance on anonymization, labeling, and post-processing of acquired scans.
在许多神经成像模式中,用于测量大脑活动的探头(如光极和电极)的精确空间配准是一个关键方面。它可以提高测量精度,并实现从基于通道的计算到体积表示的转变。
本技术说明评估了一种商用红外三维(3D)扫描仪在实际实验(或临床)条件下的功效,并提供了其使用指南。
我们使用红外3D扫描仪记录探头位置,并在五名志愿者参与者身上通过磁共振成像(MRI)扫描对其进行验证。
我们的分析表明,在标准帽固定的情况下,受试者之间探头位置的平均欧几里得距离可达43毫米,平均距离为15.25毫米[标准差(SD)=8.0]。相比之下,红外3D扫描仪与MRI获取位置之间的平均距离为5.69毫米(SD = 1.73),而连续红外3D扫描之间的平均差异为3.43毫米(SD = 1.62)。固定为30毫米的光极间距离在MRI上测量为29.28毫米(SD = 1.12),在红外3D扫描上测量为29.43毫米(SD = 1.96)。我们的结果证明了所提出的空间配准方法的高精度和可重复性,使其适用于功能近红外光谱和脑电图研究。
用于探头空间配准的3D红外扫描技术具有经济高效、简单实用、可重复且精度高的特点,对一系列神经成像应用具有潜在益处。我们提供了关于采集扫描的匿名化、标记和后处理的实用指南。