Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea.
Microb Cell Fact. 2024 May 31;23(1):160. doi: 10.1186/s12934-024-02442-w.
Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges.
This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures.
Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.
污水处理厂贡献了大约 6%的人为甲烷排放。能够将甲烷转化为聚羟基丁酸酯(PHB)的甲烷氧化菌为利用甲烷作为碳源提供了一个很有前景的解决方案,使用活性污泥作为 PHB 生产的种子培养物。然而,维持和富集 PHB 积累甲烷氧化菌群落存在挑战。
本研究调查了甲基营养型甲烷杆菌 OB3b 增强活性污泥中 PHB 积累甲烷氧化菌共生物群以提高 PHB 生产的潜力。用不同比例的甲基营养型甲烷杆菌 OB3b(1:0、1:1、1:4 和 0:1)培养废活性污泥。结果表明,在添加甲基营养型甲烷杆菌 OB3b 的培养物中,废活性污泥有大量的生长和甲烷消耗,特别是在 1:1 的比例下。增强的 PHB 积累,在相同比例的培养物中达到 37.1%,表明 II 型甲烷氧化菌占主导地位。通过数字聚合酶链反应对甲烷氧化菌进行定量,表明 II 型甲烷氧化菌逐渐增加,与 PHB 产量增加相关。然而,虽然观察到了甲基营养型甲烷杆菌 OB3b 的初始生物增强,但在随后的循环中其存在减少,表明其他 II 型甲烷氧化菌占主导地位。微生物群落分析突出了由于添加甲基营养型甲烷杆菌 OB3b 成功富集了以 II 型甲烷氧化菌为主的培养物,从而竞争过 I 型甲烷氧化菌。在添加甲基营养型甲烷杆菌 OB3b 的培养物中,甲基球菌属和甲基杆菌属最为丰富。
生物增强策略,利用甲基营养型甲烷杆菌 OB3b,可以显著提高 PHB 产量,并促进活性污泥中 PHB 积累甲烷氧化菌的富集。这些发现有助于将 PHB 生产纳入污水处理厂,为资源回收提供可持续的解决方案。