Suppr超能文献

基于强化学习的 SSVEP 识别动态窗口方法。

A Dynamic Window Method Based on Reinforcement Learning for SSVEP Recognition.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2114-2123. doi: 10.1109/TNSRE.2024.3408273. Epub 2024 Jun 7.

Abstract

Steady-state visual evoked potential (SSVEP) is one of the most used brain-computer interface (BCI) paradigms. Conventional methods analyze SSVEPs at a fixed window length. Compared with these methods, dynamic window methods can achieve a higher information transfer rate (ITR) by selecting an appropriate window length. These methods dynamically evaluate the credibility of the result by linear discriminant analysis (LDA) or Bayesian estimation and extend the window length until credible results are obtained. However, the hypotheses introduced by LDA and Bayesian estimation may not align with the collected real-world SSVEPs, which leads to an inappropriate window length. To address the issue, we propose a novel dynamic window method based on reinforcement learning (RL). The proposed method optimizes the decision of whether to extend the window length based on the impact of decisions on the ITR, without additional hypotheses. The decision model can automatically learn a strategy that maximizes the ITR through trial and error. In addition, compared with traditional methods that manually extract features, the proposed method uses neural networks to automatically extract features for the dynamic selection of window length. Therefore, the proposed method can more accurately decide whether to extend the window length and select an appropriate window length. To verify the performance, we compared the novel method with other dynamic window methods on two public SSVEP datasets. The experimental results demonstrate that the novel method achieves the highest performance by using RL.

摘要

稳态视觉诱发电位(SSVEP)是最常用的脑机接口(BCI)范式之一。传统方法在固定窗口长度下分析 SSVEP。与这些方法相比,动态窗口方法通过选择适当的窗口长度可以实现更高的信息传输率(ITR)。这些方法通过线性判别分析(LDA)或贝叶斯估计动态评估结果的可信度,并扩展窗口长度,直到获得可信的结果。然而,LDA 和贝叶斯估计引入的假设可能与实际采集到的 SSVEP 不一致,从而导致窗口长度不合适。为了解决这个问题,我们提出了一种基于强化学习(RL)的新的动态窗口方法。该方法基于决策对 ITR 的影响,优化了是否扩展窗口长度的决策,而无需额外的假设。决策模型可以通过反复试验自动学习一种最大化 ITR 的策略。此外,与传统的手动提取特征的方法相比,该方法使用神经网络自动提取特征,用于动态选择窗口长度。因此,该方法可以更准确地决定是否扩展窗口长度,并选择合适的窗口长度。为了验证性能,我们在两个公共的 SSVEP 数据集上比较了新方法与其他动态窗口方法。实验结果表明,新方法通过使用 RL 实现了最高的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验