Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center, West Hollywood, CA 90069, United States.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae353.
Answering and solving complex problems using a large language model (LLM) given a certain domain such as biomedicine is a challenging task that requires both factual consistency and logic, and LLMs often suffer from some major limitations, such as hallucinating false or irrelevant information, or being influenced by noisy data. These issues can compromise the trustworthiness, accuracy, and compliance of LLM-generated text and insights.
Knowledge Retrieval Augmented Generation ENgine (KRAGEN) is a new tool that combines knowledge graphs, Retrieval Augmented Generation (RAG), and advanced prompting techniques to solve complex problems with natural language. KRAGEN converts knowledge graphs into a vector database and uses RAG to retrieve relevant facts from it. KRAGEN uses advanced prompting techniques: namely graph-of-thoughts (GoT), to dynamically break down a complex problem into smaller subproblems, and proceeds to solve each subproblem by using the relevant knowledge through the RAG framework, which limits the hallucinations, and finally, consolidates the subproblems and provides a solution. KRAGEN's graph visualization allows the user to interact with and evaluate the quality of the solution's GoT structure and logic.
KRAGEN is deployed by running its custom Docker containers. KRAGEN is available as open-source from GitHub at: https://github.com/EpistasisLab/KRAGEN.
在给定特定领域(如生物医学)的情况下,使用大型语言模型(LLM)回答和解决复杂问题是一项具有挑战性的任务,需要兼顾事实一致性和逻辑,而 LLM 通常存在一些重大限制,例如产生虚假或不相关的信息,或者受到嘈杂数据的影响。这些问题可能会影响到 LLM 生成的文本和见解的可信度、准确性和合规性。
Knowledge Retrieval Augmented Generation ENgine (KRAGEN) 是一种新工具,它结合了知识图谱、Retrieval Augmented Generation (RAG) 和高级提示技术,以使用自然语言解决复杂问题。KRAGEN 将知识图谱转换为向量数据库,并使用 RAG 从中检索相关事实。KRAGEN 使用高级提示技术:即思维图(Graph-of-Thoughts,GoT),将复杂问题动态分解为较小的子问题,并通过 RAG 框架使用相关知识来解决每个子问题,从而限制了幻觉的产生,最后,整合子问题并提供解决方案。KRAGEN 的图形可视化允许用户与解决方案的 GoT 结构和逻辑进行交互并评估其质量。
KRAGEN 通过运行其自定义 Docker 容器进行部署。KRAGEN 可从 GitHub 以开源形式获得:https://github.com/EpistasisLab/KRAGEN。