瘤胃微生物群对胆汁酸代谢和宿主代谢调控的深入了解。

Rumen microbiome-driven insight into bile acid metabolism and host metabolic regulation.

机构信息

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China.

Department of Animal Sciences, School of Agriculture Policy and Development, University of Reading, Reading RG6 6EU, United Kingdom.

出版信息

ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae098.

Abstract

Gut microbes play a crucial role in transforming primary bile acids (BAs) into secondary forms, which influence systemic metabolic processes. The rumen, a distinctive and critical microbial habitat in ruminants, boasts a diverse array of microbial species with multifaceted metabolic capabilities. There remains a gap in our understanding of BA metabolism within this ecosystem. Herein, through the analysis of 9371 metagenome-assembled genomes and 329 cultured organisms from the rumen, we identified two enzymes integral to BA metabolism: 3-dehydro-bile acid delta4,6-reductase (baiN) and the bile acid:Na + symporter family (BASS). Both in vitro and in vivo experiments were employed by introducing exogenous BAs. We revealed a transformation of BAs in rumen and found an enzyme cluster, including L-ribulose-5-phosphate 3-epimerase and dihydroorotate dehydrogenase. This cluster, distinct from the previously known BA-inducible operon responsible for 7α-dehydroxylation, suggests a previously unrecognized pathway potentially converting primary BAs into secondary BAs. Moreover, our in vivo experiments indicated that microbial BA administration in the rumen can modulate amino acid and lipid metabolism, with systemic impacts underscored by core secondary BAs and their metabolites. Our study provides insights into the rumen microbiome's role in BA metabolism, revealing a complex microbial pathway for BA biotransformation and its subsequent effect on host metabolic pathways, including those for glucose, amino acids, and lipids. This research not only advances our understanding of microbial BA metabolism but also underscores its wider implications for metabolic regulation, offering opportunities for improving animal and potentially human health.

摘要

肠道微生物在将初级胆汁酸(BAs)转化为影响全身代谢过程的次级形式方面发挥着关键作用。瘤胃是反刍动物中一种独特而关键的微生物栖息地,拥有多种具有多方面代谢能力的微生物物种。我们对该生态系统中 BA 代谢的理解仍存在空白。在此,通过分析 9371 个宏基因组组装基因组和 329 个瘤胃培养物,我们确定了两种与 BA 代谢相关的酶:3-脱氢胆汁酸 delta4,6-还原酶(baiN)和胆汁酸:Na+ 协同转运蛋白家族(BASS)。通过引入外源性 BAs 进行了体外和体内实验。我们揭示了瘤胃中 BAs 的转化,并发现了一个包括 L-核酮糖-5-磷酸 3-差向异构酶和二氢乳清酸脱氢酶在内的酶簇。该簇与先前已知的负责 7α-去羟化的 BA 诱导操纵子不同,表明存在一种以前未被识别的途径,可能将初级 BAs 转化为次级 BAs。此外,我们的体内实验表明,瘤胃中微生物 BA 的给药可以调节氨基酸和脂质代谢,核心次级 BAs 及其代谢物强调了其对全身代谢途径的影响。我们的研究深入了解了瘤胃微生物组在 BA 代谢中的作用,揭示了 BA 生物转化的复杂微生物途径及其对宿主代谢途径的后续影响,包括葡萄糖、氨基酸和脂质代谢途径。这项研究不仅增进了我们对微生物 BA 代谢的理解,还强调了其对代谢调节的更广泛影响,为改善动物甚至人类健康提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efe4/11193847/df4165f1efce/wrae098ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索