Suppr超能文献

计算指导的人工酶中远端突变的工程改造。

Computation-guided engineering of distal mutations in an artificial enzyme.

机构信息

Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands.

Zymvol Biomodeling S.L., C/ Pau Claris, 94, 3B, 08010 Barcelona, Spain.

出版信息

Faraday Discuss. 2024 Sep 11;252(0):262-278. doi: 10.1039/d4fd00069b.

Abstract

Artificial enzymes are valuable biocatalysts able to perform new-to-nature transformations with the precision and (enantio-)selectivity of natural enzymes. Although they are highly engineered biocatalysts, they often cannot reach catalytic rates akin those of their natural counterparts, slowing down their application in real-world industrial processes. Typically, their designs only optimise the chemistry inside the active site, while overlooking the role of protein dynamics on catalysis. In this work, we show how the catalytic performance of an already engineered artificial enzyme can be further improved by distal mutations that affect the conformational equilibrium of the protein. To this end, we subjected a specialised artificial enzyme based on the lactococcal multidrug resistance regulator (LmrR) to an innovative algorithm that quickly inspects the whole protein sequence space for hotpots which affect the protein dynamics. From an initial predicted selection of 73 variants, two variants with mutations distant by more than 11 Å from the catalytic pAF residue showed increased catalytic activity towards the new-to-nature hydrazone formation reaction. Their recombination displayed a 66% higher turnover number and 14 °C higher thermostability. Microsecond time scale molecular dynamics simulations evidenced a shift in the distribution of productive enzyme conformations, which are the result of a cascade of interactions initiated by the introduced mutations.

摘要

人工酶是一种有价值的生物催化剂,能够以天然酶的精确性和(对映体)选择性进行新的自然转化。虽然它们是高度工程化的生物催化剂,但它们通常无法达到与其天然对应物相当的催化速率,这减缓了它们在实际工业过程中的应用。通常,它们的设计仅优化了活性位点内的化学性质,而忽略了蛋白质动力学对催化的作用。在这项工作中,我们展示了如何通过影响蛋白质构象平衡的远程突变进一步提高已经工程化的人工酶的催化性能。为此,我们对基于乳球菌多药耐药调节剂(LmrR)的专门人工酶进行了一项创新算法,该算法快速检查整个蛋白质序列空间,以寻找影响蛋白质动力学的热点。从最初预测的 73 个变体中,有两个变体的突变距离催化 pAF 残基超过 11 Å,对新的自然肼形成反应表现出更高的催化活性。它们的重组显示出 66%更高的周转数和 14°C 更高的热稳定性。微秒时间尺度的分子动力学模拟证明了产生活性酶构象的分布发生了变化,这是由引入的突变引发的一系列相互作用的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/914e/11389854/9e2a3fe78451/d4fd00069b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验