Guo Yanmin, Wang Yu, Meng Kai, Zhu Zongna
Shandong Research Institute of Industrial Technology, Jinan 250100, China.
School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China.
Biomimetics (Basel). 2023 Sep 8;8(5):418. doi: 10.3390/biomimetics8050418.
A quick and effective way of segmenting images is the Otsu threshold method. However, the complexity of time grows exponentially as the number of thresolds rises. The aim of this study is to address the issues with the standard threshold image segmentation method's low segmentation effect and high time complexity. The two mutations differential evolution based on adaptive control parameters is presented, and the twofold mutation approach and adaptive control parameter search mechanism are used. Superior double-mutation differential evolution views Otsu threshold picture segmentation as an optimization issue, uses the maximum interclass variance technique as the objective function, determines the ideal threshold, and then implements multi-threshold image segmentation. The experimental findings demonstrate the robustness of the enhanced double-mutation differential evolution with adaptive control parameters. Compared to other benchmark algorithms, our algorithm excels in both image segmentation accuracy and time complexity, offering superior performance.
一种快速有效的图像分割方法是大津阈值法。然而,随着阈值数量的增加,时间复杂度呈指数增长。本研究的目的是解决标准阈值图像分割方法分割效果低和时间复杂度高的问题。提出了基于自适应控制参数的双变异差分进化算法,采用了双重变异方法和自适应控制参数搜索机制。改进的双变异差分进化算法将大津阈值图像分割视为一个优化问题,使用最大类间方差技术作为目标函数,确定理想阈值,然后进行多阈值图像分割。实验结果证明了具有自适应控制参数的改进双变异差分进化算法的鲁棒性。与其他基准算法相比,我们的算法在图像分割精度和时间复杂度方面都表现出色,具有优越的性能。