Suppr超能文献

使用机器学习技术对衰老和扩张型心肌病果蝇模型中心脏动力学进行自动化评估。

Automated assessment of cardiac dynamics in aging and dilated cardiomyopathy Drosophila models using machine learning.

机构信息

Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

Engineering Physics Department, College of Engineering, University of California, Berkeley, CA, USA.

出版信息

Commun Biol. 2024 Jun 7;7(1):702. doi: 10.1038/s42003-024-06371-7.

Abstract

The Drosophila model is pivotal in deciphering the pathophysiological underpinnings of various human ailments, notably aging and cardiovascular diseases. Cutting-edge imaging techniques and physiology yield vast high-resolution videos, demanding advanced analysis methods. Our platform leverages deep learning to segment optical microscopy images of Drosophila hearts, enabling the quantification of cardiac parameters in aging and dilated cardiomyopathy (DCM). Validation using experimental datasets confirms the efficacy of our aging model. We employ two innovative approaches deep-learning video classification and machine-learning based on cardiac parameters to predict fly aging, achieving accuracies of 83.3% (AUC 0.90) and 79.1%, (AUC 0.87) respectively. Moreover, we extend our deep-learning methodology to assess cardiac dysfunction associated with the knock-down of oxoglutarate dehydrogenase (OGDH), revealing its potential in studying DCM. This versatile approach promises accelerated cardiac assays for modeling various human diseases in Drosophila and holds promise for application in animal and human cardiac physiology under diverse conditions.

摘要

果蝇模型在揭示各种人类疾病的病理生理基础方面起着关键作用,特别是衰老和心血管疾病。先进的成像技术和生理学产生了大量高分辨率的视频,需要先进的分析方法。我们的平台利用深度学习对果蝇心脏的光学显微镜图像进行分割,从而实现对衰老和扩张型心肌病(DCM)中心脏参数的定量分析。使用实验数据集进行验证,证实了我们的衰老模型的有效性。我们采用两种创新方法——基于深度学习的视频分类和基于心脏参数的机器学习——来预测果蝇的衰老,准确率分别达到 83.3%(AUC 0.90)和 79.1%(AUC 0.87)。此外,我们将深度学习方法扩展到评估与谷氨酸脱氢酶(OGDH)敲低相关的心脏功能障碍,揭示了其在研究 DCM 中的潜力。这种多功能方法有望加速在果蝇中模拟各种人类疾病的心脏检测,并有望在不同条件下应用于动物和人类心脏生理学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4813/11161577/531d2fa7137b/42003_2024_6371_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验