Suppr超能文献

人工智能在放射肿瘤学中的应用:基于公共数据集

Artificial Intelligence for Radiation Oncology Applications Using Public Datasets.

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Computer Science, Aalto University School of Science, Espoo, Finland.

出版信息

Semin Radiat Oncol. 2022 Oct;32(4):400-414. doi: 10.1016/j.semradonc.2022.06.009.

Abstract

Artificial intelligence (AI) has exceptional potential to positively impact the field of radiation oncology. However, large curated datasets - often involving imaging data and corresponding annotations - are required to develop radiation oncology AI models. Importantly, the recent establishment of Findable, Accessible, Interoperable, Reusable (FAIR) principles for scientific data management have enabled an increasing number of radiation oncology related datasets to be disseminated through data repositories, thereby acting as a rich source of data for AI model building. This manuscript reviews the current and future state of radiation oncology data dissemination, with a particular emphasis on published imaging datasets, AI data challenges, and associated infrastructure. Moreover, we provide historical context of FAIR data dissemination protocols, difficulties in the current distribution of radiation oncology data, and recommendations regarding data dissemination for eventual utilization in AI models. Through FAIR principles and standardized approaches to data dissemination, radiation oncology AI research has nothing to lose and everything to gain.

摘要

人工智能(AI)在放射肿瘤学领域具有巨大的积极影响潜力。然而,开发放射肿瘤学 AI 模型需要大型经过精心整理的数据集,这些数据集通常涉及成像数据和相应的注释。重要的是,最近科学数据管理的可发现性、可访问性、互操作性、可重用性(FAIR)原则的建立,使得越来越多的放射肿瘤学相关数据集可以通过数据存储库进行传播,从而成为 AI 模型构建的丰富数据源。本文回顾了放射肿瘤学数据传播的现状和未来,特别强调了已发表的成像数据集、AI 数据挑战以及相关基础设施。此外,我们还提供了 FAIR 数据传播协议的历史背景、放射肿瘤学数据当前分布的困难以及关于数据传播的建议,以便最终用于 AI 模型。通过 FAIR 原则和数据传播的标准化方法,放射肿瘤学 AI 研究没有任何损失,只有收获。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad33/9587532/35fd2579aa0d/nihms-1841755-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验