Suppr超能文献

2022年医学影像计算大会(MICCAI)HECKTOR挑战赛概述:PET/CT中头颈部肿瘤的自动分割与结果预测

Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT.

作者信息

Andrearczyk Vincent, Oreiller Valentin, Abobakr Moamen, Akhavanallaf Azadeh, Balermpas Panagiotis, Boughdad Sarah, Capriotti Leo, Castelli Joel, Le Rest Catherine Cheze, Decazes Pierre, Correia Ricardo, El-Habashy Dina, Elhalawani Hesham, Fuller Clifton D, Jreige Mario, Khamis Yornna, La Greca Agustina, Mohamed Abdallah, Naser Mohamed, Prior John O, Ruan Su, Tanadini-Lang Stephanie, Tankyevych Olena, Salimi Yazdan, Vallières Martin, Vera Pierre, Visvikis Dimitris, Wahid Kareem, Zaidi Habib, Hatt Mathieu, Depeursinge Adrien

机构信息

Institute of Informatics, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland.

Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland.

出版信息

Head Neck Tumor Chall (2022). 2023;13626:1-30. doi: 10.1007/978-3-031-27420-6_1. Epub 2023 Mar 18.

Abstract

This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. is the fully automatic segmentation of H&N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images. is the fully automatic prediction of Recurrence-Free Survival (RFS) from the same FDG-PET/CT and clinical data. The data were collected from nine centers for a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient () of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.

摘要

本文概述了头颈部肿瘤分割与预后预测(HECKTOR)挑战赛的第三版,该挑战赛作为2022年第25届国际医学图像计算与计算机辅助干预会议(MICCAI)的卫星活动举办。该挑战赛包括两项与头颈部癌(H&N)患者的FDG-PET/CT图像自动分析相关的任务,重点是口咽区域。任务1是从FDG-PET/CT图像中全自动分割H&N原发性大体肿瘤体积(GTVp)和转移性淋巴结(GTVn)。任务2是根据相同的FDG-PET/CT和临床数据全自动预测无复发生存期(RFS)。数据从九个中心收集,共883例,包括FDG-PET/CT图像和临床信息,分为524个训练病例和359个测试病例。最佳方法在任务1中获得的聚合骰子相似系数()为0.788,在任务2中获得的一致性指数(C-index)为0.682。

相似文献

3
Head and neck tumor segmentation in PET/CT: The HECKTOR challenge.头颈部肿瘤在 PET/CT 中的分割:HECKTOR 挑战赛。
Med Image Anal. 2022 Apr;77:102336. doi: 10.1016/j.media.2021.102336. Epub 2021 Dec 25.

引用本文的文献

3
Head and Neck Gross Tumor Volume Automatic Segmentation Using PocketNet.使用口袋网络进行头颈部大体肿瘤体积的自动分割
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:241-249. doi: 10.1007/978-3-031-83274-1_19. Epub 2025 Mar 3.
6
Head and Neck Tumor Segmentation Using Pre-RT MRI Scans and Cascaded DualUNet.使用放疗前MRI扫描和级联双U-Net进行头颈部肿瘤分割
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:191-203. doi: 10.1007/978-3-031-83274-1_14. Epub 2025 Mar 3.
10
A Coarse-to-Fine Framework for Mid-Radiotherapy Head and Neck Cancer MRI Segmentation.一种用于放疗中期头颈癌MRI分割的从粗到细框架。
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:154-165. doi: 10.1007/978-3-031-83274-1_11. Epub 2025 Mar 3.

本文引用的文献

2
Automated Tumor Segmentation in Radiotherapy.放射治疗中的自动肿瘤分割
Semin Radiat Oncol. 2022 Oct;32(4):319-329. doi: 10.1016/j.semradonc.2022.06.002.
5
Head and neck tumor segmentation in PET/CT: The HECKTOR challenge.头颈部肿瘤在 PET/CT 中的分割:HECKTOR 挑战赛。
Med Image Anal. 2022 Apr;77:102336. doi: 10.1016/j.media.2021.102336. Epub 2021 Dec 25.
7
BIAS: Transparent reporting of biomedical image analysis challenges.偏差:生物医学图像分析挑战的透明报告
Med Image Anal. 2020 Dec;66:101796. doi: 10.1016/j.media.2020.101796. Epub 2020 Aug 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验