文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

计算机辅助结直肠癌诊断:人工智能驱动的图像分割与分类。

Computer-aided colorectal cancer diagnosis: AI-driven image segmentation and classification.

作者信息

Erdaş Çağatay Berke

机构信息

Computer Engineering, Başkent University, Ankara, Turkey.

出版信息

PeerJ Comput Sci. 2024 May 17;10:e2071. doi: 10.7717/peerj-cs.2071. eCollection 2024.


DOI:10.7717/peerj-cs.2071
PMID:38855213
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11157578/
Abstract

Colorectal cancer is an enormous health concern since it is among the most lethal types of malignancy. The manual examination has its limitations, including subjectivity and data overload. To overcome these challenges, computer-aided diagnostic systems focusing on image segmentation and abnormality classification have been developed. This study presents a two-stage approach for the automatic detection of five types of colorectal abnormalities in addition to a control group: polyp, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, serrated adenoma, adenocarcinoma. In the first stage, UNet3+ was used for image segmentation to locate the anomalies, while in the second stage, the Cross-Attention Multi-Scale Vision Transformer deep learning model was used to predict the type of anomaly after highlighting the anomaly on the raw images. In anomaly segmentation, UNet3+ achieved values of 0.9872, 0.9422, 0.9832, and 0.9560 for Dice Coefficient, Jaccard Index, Sensitivity, Specificity respectively. In anomaly detection, the Cross-Attention Multi-Scale Vision Transformer model attained a classification performance of 0.9340, 0.9037, 0.9446, 0.8723, 0.9102, 0.9849 for accuracy, F1 score, precision, recall, Matthews correlation coefficient, and specificity, respectively. The proposed approach proves its capacity to alleviate the overwhelm of pathologists and enhance the accuracy of colorectal cancer diagnosis by achieving high performance in both the identification of anomalies and the segmentation of regions.

摘要

结直肠癌是一个重大的健康问题,因为它是最致命的恶性肿瘤类型之一。人工检查有其局限性,包括主观性和数据过载。为了克服这些挑战,已经开发了专注于图像分割和异常分类的计算机辅助诊断系统。本研究提出了一种两阶段方法,用于自动检测除对照组外的五种结直肠异常类型:息肉、低级别上皮内瘤变、高级别上皮内瘤变、锯齿状腺瘤、腺癌。在第一阶段,使用UNet3+进行图像分割以定位异常,而在第二阶段,使用交叉注意力多尺度视觉Transformer深度学习模型在原始图像上突出显示异常后预测异常类型。在异常分割中,UNet3+的骰子系数、杰卡德指数、灵敏度、特异性分别达到了0.9872、0.9422、0.9832和0.9560。在异常检测中,交叉注意力多尺度视觉Transformer模型的准确率、F1分数、精确率、召回率、马修斯相关系数和特异性的分类性能分别达到了0.9340、0.9037、0.9446、0.8723、0.9102、0.9849。所提出的方法通过在异常识别和区域分割方面都取得高性能,证明了其减轻病理学家负担并提高结直肠癌诊断准确性的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/9ac7dab6301b/peerj-cs-10-2071-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/cb0e359295a8/peerj-cs-10-2071-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/b9f31917e438/peerj-cs-10-2071-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/64ca42624f8a/peerj-cs-10-2071-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/50e1158cb897/peerj-cs-10-2071-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/9ac7dab6301b/peerj-cs-10-2071-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/cb0e359295a8/peerj-cs-10-2071-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/b9f31917e438/peerj-cs-10-2071-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/64ca42624f8a/peerj-cs-10-2071-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/50e1158cb897/peerj-cs-10-2071-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2e/11157578/9ac7dab6301b/peerj-cs-10-2071-g005.jpg

相似文献

[1]
Computer-aided colorectal cancer diagnosis: AI-driven image segmentation and classification.

PeerJ Comput Sci. 2024-5-17

[2]
MTU: A multi-tasking U-net with hybrid convolutional learning and attention modules for cancer classification and gland Segmentation in Colon Histopathological Images.

Comput Biol Med. 2022-11

[3]
A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.

Int J Med Inform. 2018-6-18

[4]
Polyp Segmentation Using a Hybrid Vision Transformer and a Hybrid Loss Function.

J Imaging Inform Med. 2024-4

[5]
VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images.

Comput Methods Programs Biomed. 2024-6

[6]
A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images.

Comput Biol Med. 2022-8

[7]
Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.

Adv Exp Med Biol. 2020

[8]
CoInNet: A Convolution-Involution Network With a Novel Statistical Attention for Automatic Polyp Segmentation.

IEEE Trans Med Imaging. 2023-12

[9]
Multi-class classification of thyroid nodules from automatic segmented ultrasound images: Hybrid ResNet based UNet convolutional neural network approach.

Comput Methods Programs Biomed. 2024-1

[10]
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.

Curr Med Imaging. 2020

引用本文的文献

[1]
Editorial for the Special Issue "Advances in Medical Image Processing, Segmentation, and Classification".

Diagnostics (Basel). 2025-4-28

本文引用的文献

[1]
A fully automated approach involving neuroimaging and deep learning for Parkinson's disease detection and severity prediction.

PeerJ Comput Sci. 2023-7-19

[2]
Optimized detection and segmentation of nuclei in gastric cancer images using stain normalization and blurred artifact removal.

Pathol Res Pract. 2023-8

[3]
U-Net-Based Models towards Optimal MR Brain Image Segmentation.

Diagnostics (Basel). 2023-5-4

[4]
An Explainable Classification Method Based on Complex Scaling in Histopathology Images for Lung and Colon Cancer.

Diagnostics (Basel). 2023-4-29

[5]
EBHI-Seg: A novel enteroscope biopsy histopathological hematoxylin and eosin image dataset for image segmentation tasks.

Front Med (Lausanne). 2023-1-24

[6]
Towards a guideline for evaluation metrics in medical image segmentation.

BMC Res Notes. 2022-6-20

[7]
Deep learning for colon cancer histopathological images analysis.

Comput Biol Med. 2021-9

[8]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[9]
HUMAN-MACHINE COLLABORATION FOR MEDICAL IMAGE SEGMENTATION.

Proc IEEE Int Conf Acoust Speech Signal Process. 2020-5

[10]
Advances in endoscopy for colorectal polyp detection and classification.

Proc (Bayl Univ Med Cent). 2019-12-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索