Erdaş Çağatay Berke
Computer Engineering, Başkent University, Ankara, Turkey.
PeerJ Comput Sci. 2024 May 17;10:e2071. doi: 10.7717/peerj-cs.2071. eCollection 2024.
Colorectal cancer is an enormous health concern since it is among the most lethal types of malignancy. The manual examination has its limitations, including subjectivity and data overload. To overcome these challenges, computer-aided diagnostic systems focusing on image segmentation and abnormality classification have been developed. This study presents a two-stage approach for the automatic detection of five types of colorectal abnormalities in addition to a control group: polyp, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, serrated adenoma, adenocarcinoma. In the first stage, UNet3+ was used for image segmentation to locate the anomalies, while in the second stage, the Cross-Attention Multi-Scale Vision Transformer deep learning model was used to predict the type of anomaly after highlighting the anomaly on the raw images. In anomaly segmentation, UNet3+ achieved values of 0.9872, 0.9422, 0.9832, and 0.9560 for Dice Coefficient, Jaccard Index, Sensitivity, Specificity respectively. In anomaly detection, the Cross-Attention Multi-Scale Vision Transformer model attained a classification performance of 0.9340, 0.9037, 0.9446, 0.8723, 0.9102, 0.9849 for accuracy, F1 score, precision, recall, Matthews correlation coefficient, and specificity, respectively. The proposed approach proves its capacity to alleviate the overwhelm of pathologists and enhance the accuracy of colorectal cancer diagnosis by achieving high performance in both the identification of anomalies and the segmentation of regions.
结直肠癌是一个重大的健康问题,因为它是最致命的恶性肿瘤类型之一。人工检查有其局限性,包括主观性和数据过载。为了克服这些挑战,已经开发了专注于图像分割和异常分类的计算机辅助诊断系统。本研究提出了一种两阶段方法,用于自动检测除对照组外的五种结直肠异常类型:息肉、低级别上皮内瘤变、高级别上皮内瘤变、锯齿状腺瘤、腺癌。在第一阶段,使用UNet3+进行图像分割以定位异常,而在第二阶段,使用交叉注意力多尺度视觉Transformer深度学习模型在原始图像上突出显示异常后预测异常类型。在异常分割中,UNet3+的骰子系数、杰卡德指数、灵敏度、特异性分别达到了0.9872、0.9422、0.9832和0.9560。在异常检测中,交叉注意力多尺度视觉Transformer模型的准确率、F1分数、精确率、召回率、马修斯相关系数和特异性的分类性能分别达到了0.9340、0.9037、0.9446、0.8723、0.9102、0.9849。所提出的方法通过在异常识别和区域分割方面都取得高性能,证明了其减轻病理学家负担并提高结直肠癌诊断准确性的能力。
PeerJ Comput Sci. 2024-5-17
J Imaging Inform Med. 2024-4
Comput Methods Programs Biomed. 2024-6
Adv Exp Med Biol. 2020
IEEE Trans Med Imaging. 2023-12
Diagnostics (Basel). 2025-4-28
Diagnostics (Basel). 2023-5-4
Diagnostics (Basel). 2023-4-29
Front Med (Lausanne). 2023-1-24
BMC Res Notes. 2022-6-20
Comput Biol Med. 2021-9
Proc IEEE Int Conf Acoust Speech Signal Process. 2020-5
Proc (Bayl Univ Med Cent). 2019-12-18