Suppr超能文献

探索数据挖掘在挖掘传统药用植物知识方面的作用:以伊朗沙尔巴巴克为例。

Exploring the power of data mining for uncovering traditional medicinal plant knowledge: A case study in Shahrbabak, Iran.

机构信息

Faculty of Science, Department of Biology, University of Jiroft, Jiroft, Iran.

Faculty of Mathematics and Computer, Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.

出版信息

PLoS One. 2024 Jun 10;19(6):e0303229. doi: 10.1371/journal.pone.0303229. eCollection 2024.

Abstract

The present study recorded indigenous knowledge of medicinal plants in Shahrbabak, Iran. We described a method using data mining algorithms to predict medicinal plants' mode of application. Twenty-oneindividuals aged 28 to 81 were interviewed. Firstly, data were collected and analyzed based on quantitative indices such as the informant consensus factor (ICF), the cultural importance index (CI), and the relative frequency of citation (RFC). Secondly, the data was classified by support vector machines, J48 decision trees, neural networks, and logistic regression. So, 141 medicinal plants from 43 botanical families were documented. Lamiaceae, with 18 species, was the dominant family among plants, and plant leaves were most frequently used for medicinal purposes. The decoction was the most commonly used preparation method (56%), and therophytes were the most dominant (48.93%) among plants. Regarding the RFC index, the most important species are Adiantum capillus-veneris L. and Plantago ovata Forssk., while Artemisia auseri Boiss. ranked first based on the CI index. The ICF index demonstrated that metabolic disorders are the most common problems among plants in the Shahrbabak region. Finally, the J48 decision tree algorithm consistently outperforms other methods, achieving 95% accuracy in 10-fold cross-validation and 70-30 data split scenarios. The developed model detects with maximum accuracy how to consume medicinal plants.

摘要

本研究记录了伊朗沙尔巴巴克地区的药用植物本土知识。我们描述了一种使用数据挖掘算法预测药用植物应用方式的方法。21 名年龄在 28 至 81 岁的受访者接受了采访。首先,根据信息共识因子(ICF)、文化重要性指数(CI)和相对引用频率(RFC)等定量指标收集和分析数据。其次,使用支持向量机、J48 决策树、神经网络和逻辑回归对数据进行分类。因此,记录了来自 43 个植物科的 141 种药用植物。唇形科有 18 种植物,是植物科中最主要的科,植物叶子是最常用于药用的部位。汤剂是最常用的制剂方法(56%),而一年生植物是植物中最主要的(48.93%)。关于 RFC 指数,最重要的物种是铁线蕨和车前草,而根据 CI 指数,艾菊属植物是最重要的物种。ICF 指数表明,代谢紊乱是沙尔巴巴克地区植物中最常见的问题。最后,J48 决策树算法始终表现优于其他方法,在 10 倍交叉验证和 70-30 数据分割场景中达到 95%的准确率。开发的模型以最大的准确性检测如何消费药用植物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df06/11164334/15447d51e157/pone.0303229.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验