Suppr超能文献

一种用于从脑部磁共振图像中训练深度学习算法进行肿瘤分割的主动学习方法。

An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images.

作者信息

Boehringer Andrew S, Sanaat Amirhossein, Arabi Hossein, Zaidi Habib

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1205, Geneva, Switzerland.

Geneva University Neurocenter, University of Geneva, CH-1211, Geneva, Switzerland.

出版信息

Insights Imaging. 2023 Aug 25;14(1):141. doi: 10.1186/s13244-023-01487-6.

Abstract

PURPOSE

This study focuses on assessing the performance of active learning techniques to train a brain MRI glioma segmentation model.

METHODS

The publicly available training dataset provided for the 2021 RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge was used in this study, consisting of 1251 multi-institutional, multi-parametric MR images. Post-contrast T1, T2, and T2 FLAIR images as well as ground truth manual segmentation were used as input for the model. The data were split into a training set of 1151 cases and testing set of 100 cases, with the testing set remaining constant throughout. Deep convolutional neural network segmentation models were trained using the NiftyNet platform. To test the viability of active learning in training a segmentation model, an initial reference model was trained using all 1151 training cases followed by two additional models using only 575 cases and 100 cases. The resulting predicted segmentations of these two additional models on the remaining training cases were then addended to the training dataset for additional training.

RESULTS

It was demonstrated that an active learning approach for manual segmentation can lead to comparable model performance for segmentation of brain gliomas (0.906 reference Dice score vs 0.868 active learning Dice score) while only requiring manual annotation for 28.6% of the data.

CONCLUSION

The active learning approach when applied to model training can drastically reduce the time and labor spent on preparation of ground truth training data.

CRITICAL RELEVANCE STATEMENT

Active learning concepts were applied to a deep learning-assisted segmentation of brain gliomas from MR images to assess their viability in reducing the required amount of manually annotated ground truth data in model training.

KEY POINTS

• This study focuses on assessing the performance of active learning techniques to train a brain MRI glioma segmentation model. • The active learning approach for manual segmentation can lead to comparable model performance for segmentation of brain gliomas. • Active learning when applied to model training can drastically reduce the time and labor spent on preparation of ground truth training data.

摘要

目的

本研究着重评估主动学习技术在训练脑MRI神经胶质瘤分割模型方面的性能。

方法

本研究使用了为2021年RSNA-ASNR-MICCAI脑肿瘤分割(BraTS)挑战赛提供的公开可用训练数据集,该数据集由1251例多机构、多参数MR图像组成。增强后T1、T2和T2 FLAIR图像以及手动分割的真实标注用作模型的输入。数据被分为1151例的训练集和100例的测试集,测试集在整个过程中保持不变。使用NiftyNet平台训练深度卷积神经网络分割模型。为了测试主动学习在训练分割模型中的可行性,首先使用所有1151个训练病例训练一个初始参考模型,然后再使用仅575例和100例训练另外两个模型。然后将这两个额外模型在其余训练病例上得到的预测分割结果添加到训练数据集中进行额外训练。

结果

结果表明,用于手动分割的主动学习方法在脑胶质瘤分割方面可带来相当的模型性能(参考Dice分数为0.906,主动学习Dice分数为0.868),同时仅需对28.6%的数据进行手动标注。

结论

应用于模型训练的主动学习方法可大幅减少在准备真实训练数据上花费的时间和人力。

关键相关声明

主动学习概念被应用于从MR图像中对脑胶质瘤进行深度学习辅助分割,以评估其在减少模型训练中所需手动标注真实数据量方面的可行性。

要点

• 本研究着重评估主动学习技术在训练脑MRI神经胶质瘤分割模型方面的性能。• 用于手动分割的主动学习方法在脑胶质瘤分割方面可带来相当的模型性能。• 应用于模型训练的主动学习可大幅减少在准备真实训练数据上花费的时间和人力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/10449747/e4b1cdb686e3/13244_2023_1487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验