文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

姜黄素作为电子转移介体将 II 型光敏剂转化为 I 型光敏剂。

Thymoquinone as an electron transfer mediator to convert Type II photosensitizers to Type I photosensitizers.

机构信息

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.

出版信息

Nat Commun. 2024 Jun 10;15(1):4943. doi: 10.1038/s41467-024-49311-z.


DOI:10.1038/s41467-024-49311-z
PMID:38858372
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11164902/
Abstract

The development of Type I photosensitizers (PSs) is of great importance due to the inherent hypoxic intolerance of photodynamic therapy (PDT) in the hypoxic microenvironment. Compared to Type II PSs, Type I PSs are less reported due to the absence of a general molecular design strategy. Herein, we report that the combination of typical Type II PS and natural substrate carvacrol (CA) can significantly facilitate the Type I pathway to efficiently generate superoxide radical (O). Detailed mechanism study suggests that CA is activated into thymoquinone (TQ) by local singlet oxygen generated from the PS upon light irradiation. With TQ as an efficient electron transfer mediator, it promotes the conversion of O to O by PS via electron transfer-based Type I pathway. Notably, three classical Type II PSs are employed to demonstrate the universality of the proposed approach. The Type I PDT against S. aureus has been demonstrated under hypoxic conditions in vitro. Furthermore, this coupled photodynamic agent exhibits significant bactericidal activity with an antibacterial rate of 99.6% for the bacterial-infection female mice in the in vivo experiments. Here, we show a simple, effective, and universal method to endow traditional Type II PSs with hypoxic tolerance.

摘要

由于光动力疗法(PDT)在缺氧微环境中固有的缺氧不耐受性,开发 I 型光敏剂(PS)非常重要。与 II 型 PS 相比,由于缺乏通用的分子设计策略,I 型 PS 的报道较少。本文报道了将典型的 II 型 PS 和天然底物香芹酚(CA)结合,可以显著促进 I 型途径,有效地生成超氧自由基(O)。详细的机制研究表明,CA 在光照下由 PS 产生的局部单线态氧激活为百里香醌(TQ)。TQ 作为有效的电子转移介体,通过基于电子转移的 I 型途径促进 PS 将 O 转化为 O。值得注意的是,三种经典的 II 型 PS 被用于证明所提出方法的普遍性。在体外缺氧条件下已经证明了针对金黄色葡萄球菌的 I 型 PDT。此外,这种偶联的光动力试剂在体内实验中对感染细菌的雌性小鼠表现出显著的杀菌活性,抗菌率达到 99.6%。在这里,我们展示了一种简单、有效、通用的方法,使传统的 II 型 PS 具有缺氧耐受性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/3af63088a893/41467_2024_49311_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/e4826d2815bd/41467_2024_49311_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/4f0e293e2252/41467_2024_49311_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/3d4cad00ef90/41467_2024_49311_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/e13434064c2c/41467_2024_49311_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/5eddca7af6a9/41467_2024_49311_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/3af63088a893/41467_2024_49311_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/e4826d2815bd/41467_2024_49311_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/4f0e293e2252/41467_2024_49311_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/3d4cad00ef90/41467_2024_49311_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/e13434064c2c/41467_2024_49311_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/5eddca7af6a9/41467_2024_49311_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853a/11164902/3af63088a893/41467_2024_49311_Fig6_HTML.jpg

相似文献

[1]
Thymoquinone as an electron transfer mediator to convert Type II photosensitizers to Type I photosensitizers.

Nat Commun. 2024-6-10

[2]
Constructing Heavy-Atom-Free Photosensitizers for Hypoxic Tumor Phototherapy Based on Donor-Excited Photoinduced Electron-Transfer-Driven Type-I and Type-II Mechanisms.

ACS Appl Mater Interfaces. 2024-8-7

[3]
BODIPY-Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen.

Angew Chem Int Ed Engl. 2021-9-1

[4]
High antimicrobial photodynamic activity of photosensitizer encapsulated dual-functional metallocatanionic vesicles against drug-resistant bacteria S. aureus.

Biomater Sci. 2020-5-21

[5]
Insight into the efficiency of microalgae' lipidic extracts as photosensitizers for Antimicrobial Photodynamic Therapy against Staphylococcus aureus.

J Photochem Photobiol B. 2024-10

[6]
Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy.

ACS Appl Mater Interfaces. 2022-2-2

[7]
Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers.

Photodiagnosis Photodyn Ther. 2013-8-5

[8]
Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical.

Nat Commun. 2022-10-19

[9]
A design strategy of pure Type-I thiadiazolo[3,4-g]quinoxaline-based photosensitizers for photodynamic therapy.

Eur J Med Chem. 2024-2-5

[10]
Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia.

J Mater Chem B. 2023-5-31

引用本文的文献

[1]
A Bromobenzoyl Pyridine Photosensitizer with Suppressed Phosphorescence for Efficient ROS-Based Photodynamic Therapy.

J Fluoresc. 2025-7-5

[2]
NRF2 modulates WNT signaling pathway to enhance photodynamic therapy resistance in oral leukoplakia.

EMBO Mol Med. 2025-6-10

[3]
Endoplasmic reticulum-targeting activatable nanophotosensitizers for hypoxia relief and enhanced photodynamic therapy.

Chem Sci. 2025-5-6

[4]
pH-Responsive AIE Photosensitizers for Enhanced Antibacterial Therapy.

Angew Chem Int Ed Engl. 2025-7

[5]
Nanoparticles for Photodynamic Therapy of Breast Cancer: A Review of Recent Studies.

Molecules. 2025-3-31

[6]
PhotoChem Interplays: Lighting the Way for Drug Delivery and Diagnosis.

Adv Drug Deliv Rev. 2025-4

[7]
Nanoparticle-Mediated Cuproptosis and Photodynamic Synergistic Strategy: A Novel Horizon for Cancer Therapy.

Cancer Med. 2025-2

[8]
Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections.

Mater Today Bio. 2024-9-16

本文引用的文献

[1]
Integration of TADF Photosensitizer as "Electron Pump" and BSA as "Electron Reservoir" for Boosting Type I Photodynamic Therapy.

J Am Chem Soc. 2023-4-12

[2]
Overcoming the Oxygen Dilemma in Photoredox Catalysis: Near-Infrared (NIR) Light-Triggered Peroxynitrite Generation for Antibacterial Applications.

Angew Chem Int Ed Engl. 2023-5-8

[3]
Supramolecular Photosensitizer Enables Oxygen-Independent Generation of Hydroxyl Radicals for Photodynamic Therapy.

J Am Chem Soc. 2023-2-13

[4]
From Low to No O-Dependent Hypoxia Photodynamic Therapy (hPDT): A New Perspective.

Acc Chem Res. 2022-11-15

[5]
Lactose azocalixarene drug delivery system for the treatment of multidrug-resistant pseudomonas aeruginosa infected diabetic ulcer.

Nat Commun. 2022-10-21

[6]
Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical.

Nat Commun. 2022-10-19

[7]
Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections.

Nat Commun. 2022-7-5

[8]
Photocatalytic Superoxide Radical Generator that Induces Pyroptosis in Cancer Cells.

J Am Chem Soc. 2022-6-29

[9]
Cationization-Enhanced Type I and Type II ROS Generation for Photodynamic Treatment of Drug-Resistant Bacteria.

ACS Nano. 2022-6-28

[10]
Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy.

Nanomicro Lett. 2022-5-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索