Suppr超能文献

一种具有抑制磷光的溴苯甲酰基吡啶光敏剂用于基于活性氧的高效光动力疗法。

A Bromobenzoyl Pyridine Photosensitizer with Suppressed Phosphorescence for Efficient ROS-Based Photodynamic Therapy.

机构信息

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Re-Source Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

出版信息

J Fluoresc. 2025 Jul 5. doi: 10.1007/s10895-025-04427-3.

Abstract

Organic room-temperature phosphorescent (RTP) and photodynamic therapy (PDT) both rely on triplet excitons generated through intersystem cross-system processes (ISC), but their energy dissipation pathways-the radiative decay of RTP and the reactive oxygen species (ROS) production of photodynamic therapy (PDT) are essentially competitive. Here, we report a photosensitizer based on bromobenzoylpyridine named 2N-Br, which achieves short-lifetime phosphorescence emission (lifetime = 0.018 ms, Φ≈0%), but generates a strong ROS. The molecular structure characterized by carbonyl and bromine atoms can effectively promote the efficient ISC process. Theoretical calculations show that it has a narrow ΔE, while single crystal analysis shows that the dihedral angle (56.03°) and weak intermolecular interaction reduces the restricted molecular movement and enhances the non-radiative transition, which is conducive to the generation of oxygen-dependent ROS. When nanoparticles (2N-Br NPs) were fabricated, this material exhibited a strong PDT effect on 4T1 cells under 405 nm Xe lamp exposure. This work established a molecular strategy that links phosphorescence with the generation of ROS, demonstrating that the generation of strong ROS can coexist with ultra-low phosphorescence efficiency.

摘要

有机室温磷光(RTP)和光动力疗法(PDT)都依赖于通过系间窜越过程(ISC)产生的三线态激子,但它们的能量耗散途径——RTP的辐射衰减和光动力疗法(PDT)的活性氧(ROS)产生——本质上是相互竞争的。在此,我们报道了一种基于溴苯甲酰吡啶的光敏剂,名为2N-Br,它实现了短寿命磷光发射(寿命 = 0.018毫秒,Φ≈0%),但能产生强烈的ROS。由羰基和溴原子表征的分子结构可以有效地促进高效的ISC过程。理论计算表明它具有较窄的ΔE,而单晶分析表明二面角(56.03°)和较弱的分子间相互作用降低了分子的受限运动并增强了非辐射跃迁,这有利于依赖氧的ROS的产生。当制备纳米颗粒(2N-Br NPs)时,这种材料在405纳米氙灯照射下对4T1细胞表现出强烈的PDT效应。这项工作建立了一种将磷光与ROS产生联系起来的分子策略,证明了强烈的ROS产生可以与超低磷光效率共存。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验