Suppr超能文献

通过光动力疗法增强缺氧微环境以激活抗生素,从而对抗细菌生物膜感染。

Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections.

机构信息

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.

Nanjing Stomatological Hospital, Medicine School of Nanjing University, Nanjing, 210008, China.

出版信息

Nat Commun. 2022 Jul 5;13(1):3875. doi: 10.1038/s41467-022-31479-x.

Abstract

Traditional antibiotic treatment has limited efficacy for the drug-tolerant bacteria present in biofilms because of their unique metabolic conditions in the biofilm infection microenvironment. Modulating the biofilm infection microenvironment may influence the metabolic state of the bacteria and provide alternative therapeutic routes. In this study, photodynamic therapy is used not only to eradicate methicillin-resistant Staphylococcus aureus biofilms in the normoxic condition, but also to potentiate the hypoxic microenvironment, which induces the anaerobic metabolism of methicillin-resistant Staphylococcus aureus and activates the antibacterial activity of metronidazole. Moreover, the photodynamic therapy-activated chemotherapy can polarize the macrophages to a M2-like phenotype and promote the repair of the biofilm infected wounds in mice. This biofilm infection microenvironment modulation strategy, whereby the hypoxic microenvironment is potentiated to synergize photodynamic therapy with chemotherapy, provides an alternative pathway for efficient treatment of biofilm-associated infections.

摘要

传统抗生素治疗对生物膜中存在的耐药菌疗效有限,因为它们在生物膜感染微环境中的独特代谢条件。调节生物膜感染微环境可能会影响细菌的代谢状态,并提供替代治疗途径。在这项研究中,光动力疗法不仅用于消除耐甲氧西林金黄色葡萄球菌在常氧条件下的生物膜,还用于增强缺氧微环境,诱导耐甲氧西林金黄色葡萄球菌的厌氧代谢,并激活甲硝唑的抗菌活性。此外,光动力疗法激活的化学疗法可以使巨噬细胞极化到 M2 样表型,并促进小鼠生物膜感染伤口的修复。这种生物膜感染微环境调节策略,通过增强缺氧微环境来协同光动力疗法与化学疗法,为有效治疗生物膜相关感染提供了一种替代途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11ef/9256606/e7701376302a/41467_2022_31479_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验