Suppr超能文献

纳米结构在生物医学应用中的优势与局限。

Advantages and limitations of nanostructures for biomedical applications.

作者信息

Roszkowski Szymon, Durczynska Zofia

机构信息

on of Biochemistry and Biogerontology, Collegium Medicum, Nicolaus Copernicus University, Toruń, Poland.

出版信息

Adv Clin Exp Med. 2025 Mar;34(3):447-456. doi: 10.17219/acem/186846.

Abstract

This review examines recent progress in developing nanoscale drug delivery systems for biomedical applications. Key nanocarriers, including inorganic nanoparticles, dendrimers, protein nanoparticles, polymeric micelles, liposomes, carbon nanotubes (CNTs), quantum dots (QDs), and biopolymeric nanoparticles, were summarized. Compared with free drugs, the tunable physicochemical properties of these materials allow for the encapsulation of therapeutics and improved pharmacokinetics. However, limitations such as toxicity, poor biodegradability, lack of controlled release, and low encapsulation efficiency remain. Inorganic nanoparticles exhibit issues with accumulation and toxicity. Dendrimers require complex syntheses and demonstrations of long-term safety. Protein nanoparticles suffer from low drug loading and stability. Polymeric micelles have stability and tumor penetration limitations. Liposomes exhibit low encapsulation efficiency and rapid clearance. Carbon nanotubes demonstrate toxicity and poor aqueous solubility. Quantum dots contain heavy metals, leading to toxicity. Biopolymeric nanoparticles have low stability and control over release kinetics. Strategies such as surface engineering with polymers and ligands aim to enhance nanoparticle targeting and biocompatibility. The combination of nanostructures in hybrid systems aims to synergize benefits while mitigating individual limitations. Stimulus-responsive and multifunctional nanoparticles enable triggered release and imaging capabilities. Overall, continued research into novel bioinspired designs, smart responsiveness and hybrid approaches is critical to fully realize the clinical potential of engineered nanomedicines for advanced drug delivery applications.

摘要

本综述考察了用于生物医学应用的纳米级药物递送系统的最新进展。总结了关键的纳米载体,包括无机纳米颗粒、树枝状大分子、蛋白质纳米颗粒、聚合物胶束、脂质体、碳纳米管(CNTs)、量子点(QDs)和生物聚合物纳米颗粒。与游离药物相比,这些材料可调节的物理化学性质使得能够包封治疗剂并改善药代动力学。然而,诸如毒性、生物降解性差、缺乏控释以及包封效率低等局限性仍然存在。无机纳米颗粒存在积累和毒性问题。树枝状大分子需要复杂的合成以及长期安全性的证明。蛋白质纳米颗粒存在药物负载量低和稳定性差的问题。聚合物胶束存在稳定性和肿瘤渗透方面的局限性。脂质体表现出包封效率低和快速清除的问题。碳纳米管显示出毒性和水溶性差的问题。量子点含有重金属,会导致毒性。生物聚合物纳米颗粒稳定性低且对释放动力学的控制不佳。诸如用聚合物和配体进行表面工程等策略旨在提高纳米颗粒的靶向性和生物相容性。混合系统中纳米结构的组合旨在协同发挥优势,同时减轻各自的局限性。刺激响应性和多功能纳米颗粒能够实现触发释放和成像功能。总体而言,持续开展对新型仿生设计、智能响应性和混合方法的研究对于充分实现工程化纳米药物在先进药物递送应用中的临床潜力至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验