Suppr超能文献

淀粉样蛋白 PET 网络:基于端到端深度学习的脑 PET 成像中淀粉样蛋白阳性的分类。

AmyloidPETNet: Classification of Amyloid Positivity in Brain PET Imaging Using End-to-End Deep Learning.

机构信息

From the Department of Bioengineering, Rice University, Houston, Tex (S. Fan); Department of Radiology (S. Fan, M.R.P., P.X., S.M.H., J.J.L., S. Flores, P.L., B.G., C.A.R., D.S.M., A.N., T.L.S.B., A.S.), Charles F. and Joanne Knight Alzheimer Disease Research Center (B.G., B.M.A., R.B., J.C.M., T.L.S.B.), Department of Neurology (C.A.R., B.M.A., R.J.B., J.C.M.), and Institute for Informatics, Data Science and Biostatistics (A.S.), Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8132, St Louis, MO 63110; Duke-NUS Medical School, Singapore (S. Fan); Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, Mo (S.C., A.S.); Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada (A.N.); and Tracy Family SILQ Center for Neurodegenerative Biology, St Louis, Mo (R.J.B.).

出版信息

Radiology. 2024 Jun;311(3):e231442. doi: 10.1148/radiol.231442.

Abstract

Background Visual assessment of amyloid PET scans relies on the availability of radiologist expertise, whereas quantification of amyloid burden typically involves MRI for processing and analysis, which can be computationally expensive. Purpose To develop a deep learning model to classify minimally processed brain PET scans as amyloid positive or negative, evaluate its performance on independent data sets and different tracers, and compare it with human visual reads. Materials and Methods This retrospective study used 8476 PET scans (6722 patients) obtained from late 2004 to early 2023 that were analyzed across five different data sets. A deep learning model, AmyloidPETNet, was trained on 1538 scans from 766 patients, validated on 205 scans from 95 patients, and internally tested on 184 scans from 95 patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) fluorine 18 (F) florbetapir (FBP) data set. It was tested on ADNI scans using different tracers and scans from independent data sets. Scan amyloid positivity was based on mean cortical standardized uptake value ratio cutoffs. To compare with model performance, each scan from both the Centiloid Project and a subset of the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study were visually interpreted with a confidence level (low, intermediate, high) of amyloid positivity/negativity. The area under the receiver operating characteristic curve (AUC) and other performance metrics were calculated, and Cohen κ was used to measure physician-model agreement. Results The model achieved an AUC of 0.97 (95% CI: 0.95, 0.99) on test ADNI F-FBP scans, which generalized well to F-FBP scans from the Open Access Series of Imaging Studies (AUC, 0.95; 95% CI: 0.93, 0.97) and the A4 study (AUC, 0.98; 95% CI: 0.98, 0.98). Model performance was high when applied to data sets with different tracers (AUC ≥ 0.97). Other performance metrics provided converging evidence. Physician-model agreement ranged from fair (Cohen κ = 0.39; 95% CI: 0.16, 0.60) on a sample of mostly equivocal cases from the A4 study to almost perfect (Cohen κ = 0.93; 95% CI: 0.86, 1.0) on the Centiloid Project. Conclusion The developed model was capable of automatically and accurately classifying brain PET scans as amyloid positive or negative without relying on experienced readers or requiring structural MRI. Clinical trial registration no. NCT00106899 © RSNA, 2024 See also the editorial by Bryan and Forghani in this issue.

摘要

背景 对淀粉样蛋白 PET 扫描的视觉评估依赖于放射科专家的专业知识,而淀粉样蛋白负担的定量分析通常需要 MRI 进行处理和分析,这可能计算成本较高。 目的 开发一种深度学习模型,以对经过最小处理的脑 PET 扫描进行分类,将其分为淀粉样蛋白阳性或阴性,评估其在独立数据集和不同示踪剂上的性能,并与人工视觉阅读进行比较。 材料与方法 本回顾性研究使用了从 2004 年末到 2023 年初获得的 8476 份 PET 扫描(6722 例患者),这些扫描分别来自五个不同的数据集进行分析。一种名为 AmyloidPETNet 的深度学习模型在来自 766 例患者的 1538 份扫描中进行了训练,在来自 95 例患者的 205 份扫描中进行了验证,在来自阿尔茨海默病神经影像学倡议(ADNI)氟 18(F)氟比他哌(FBP)数据集的 184 份来自 95 例患者的扫描中进行了内部测试。它在 ADNI 扫描中使用了不同的示踪剂和来自独立数据集的扫描进行了测试。扫描淀粉样蛋白阳性是基于皮质标准化摄取值比值的平均值。为了与模型性能进行比较,Centiloid 项目和 Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease(A4)研究的一部分子集的每个扫描都以淀粉样蛋白阳性/阴性的置信水平(低、中、高)进行了人工解读。计算了受试者工作特征曲线(AUC)和其他性能指标,并用 Cohen κ 来衡量医生-模型的一致性。 结果 该模型在测试 ADNI F-FBP 扫描上的 AUC 为 0.97(95%CI:0.95,0.99),在 Open Access Series of Imaging Studies(AUC,0.95;95%CI:0.93,0.97)和 A4 研究(AUC,0.98;95%CI:0.98,0.98)的 F-FBP 扫描中表现出良好的泛化能力。当应用于具有不同示踪剂的数据集时,模型性能较高(AUC≥0.97)。其他性能指标也提供了一致的证据。医生-模型的一致性范围从 A4 研究中大多数不确定病例的中等(Cohen κ=0.39;95%CI:0.16,0.60)到 Centiloid 项目的几乎完美(Cohen κ=0.93;95%CI:0.86,1.0)。 结论 该模型能够自动、准确地对脑 PET 扫描进行分类,判断其是否为淀粉样蛋白阳性或阴性,而无需依赖经验丰富的读者或需要结构 MRI。 临床试验注册号 NCT00106899 © RSNA,2024 请参见本期 Bryan 和 Forghani 的社论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdf/11211958/9498ada468e0/radiol.231442.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验