Suppr超能文献

一个免疫相关的十一 RNA -signature 驱动的风险评分模型,用于预测骨肉瘤转移的预后。

An immune-related eleven-RNA signature-drived risk score model for prognosis of osteosarcoma metastasis.

机构信息

The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No. 23 Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu, China.

Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, China.

出版信息

Sci Rep. 2024 Jun 11;14(1):13401. doi: 10.1038/s41598-024-54292-6.

Abstract

This study aimed to determine an immune-related RNA signature as a prognostic marker, in this study, we developed a risk score model for predicting the prognosis of osteosarcoma metastasis. We first downloaded the clinical information and expression data of osteosarcoma samples from the UCSC Xena and GEO databases, of which the former was the training set and the latter was the validation set. Immune infiltration was assessed using the ssGSEA and ESTIMATE algorithms, and the osteosarcoma samples were divided into the Immunity_L and Immunity_H groups. Then, eleven RNAs were identified as the optimal prognostic RNA signatures using LASSO Cox regression analysis for establishing a risk score (RS) model. Kaplan-Meier approach indicated the high-risk group exhibited a shorter survival. Furthermore, we analyzed the tumor metastasis, age, and RS model status were determined to be independent clinical prognostic factors using Cox regression analysis. Decision curve analysis (DCA) indicated that the prognostic factor + RS model had the best net benefit. Finally, nine tumor-infiltrating immune cells (TIICs) showed significant differences in abundance between high- and low-risk groups via CIBERSORT deconvolution algorithm. In conclusion, the immune-related eleven-RNA signature be could served as a potential prognostic biomarker for osteosarcoma metastasis.

摘要

本研究旨在确定一种免疫相关的 RNA 特征作为预后标志物。在本研究中,我们开发了一种预测骨肉瘤转移预后的风险评分模型。我们首先从 UCSC Xena 和 GEO 数据库中下载骨肉瘤样本的临床信息和表达数据,前者为训练集,后者为验证集。使用 ssGSEA 和 ESTIMATE 算法评估免疫浸润,将骨肉瘤样本分为 Immunity_L 和 Immunity_H 组。然后,使用 LASSO Cox 回归分析确定了 11 个 RNA 作为最佳预后 RNA 特征,建立风险评分(RS)模型。Kaplan-Meier 分析表明,高风险组的生存率较短。此外,我们使用 Cox 回归分析发现肿瘤转移、年龄和 RS 模型状态是独立的临床预后因素。决策曲线分析(DCA)表明,预后因素+RS 模型具有最佳的净效益。最后,通过 CIBERSORT 去卷积算法,在高风险和低风险组之间,有 9 种肿瘤浸润免疫细胞(TIICs)的丰度存在显著差异。总之,该研究发现的 11 个与免疫相关的 RNA 特征可以作为骨肉瘤转移的潜在预后生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ef/11166963/250e3c32d0bb/41598_2024_54292_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验