Yan Han, Mao Hongye, Qin Peixin, Wang Jinhua, Liang Haidong, Zhou Xiaorong, Wang Xiaoning, Chen Hongyu, Meng Ziang, Liu Li, Zhao Guojian, Duan Zhiyuan, Zhu Zengwei, Fang Bin, Zeng Zhongming, Bettiol Andrew A, Zhang Qinghua, Tang Peizhe, Jiang Chengbao, Liu Zhiqi
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
Nat Commun. 2024 Jun 11;15(1):4978. doi: 10.1038/s41467-024-49451-2.
The electrical outputs of single-layer antiferromagnetic memory devices relying on the anisotropic magnetoresistance effect are typically rather small at room temperature. Here we report a new type of antiferromagnetic memory based on the spin phase change in a Mn-Ir binary intermetallic thin film at a composition within the phase boundary between its collinear and noncollinear phases. Via a small piezoelectric strain, the spin structure of this composition-boundary metal is reversibly interconverted, leading to a large nonvolatile room-temperature resistance modulation that is two orders of magnitude greater than the anisotropic magnetoresistance effect for a metal, mimicking the well-established phase change memory from a quantum spin degree of freedom. In addition, this antiferromagnetic spin phase change memory exhibits remarkable time and temperature stabilities, and is robust in a magnetic field high up to 60 T.
基于各向异性磁阻效应的单层反铁磁存储器件在室温下的电输出通常相当小。在此,我们报道了一种新型反铁磁存储器,它基于Mn-Ir二元金属间化合物薄膜在其共线相和非共线相之间的相界内某一成分处的自旋相变。通过施加小的压电应变,这种成分边界金属的自旋结构可实现可逆的相互转换,从而导致大的非易失性室温电阻调制,该调制比金属的各向异性磁阻效应大两个数量级,类似于已确立的基于量子自旋自由度的相变存储器。此外,这种反铁磁自旋相变存储器具有显著的时间和温度稳定性,并且在高达60 T的强磁场中也很稳定。