Sakti Anjar Dimara, Deliar Albertus, Hafidzah Dyah Rezqy, Chintia Adria Viola, Anggraini Tania Septi, Ihsan Kalingga Titon Nur, Virtriana Riantini, Suwardhi Deni, Harto Agung Budi, Nurmaulia Sella Lestari, Aritenang Adiwan Fahlan, Riqqi Akhmad, Hernandi Andri, Soeksmantono Budhy, Wikantika Ketut
Geographic Information Sciences and Technology Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
Sci Rep. 2024 Jun 11;14(1):13385. doi: 10.1038/s41598-024-62001-6.
The increasing demand for land development due to human activities has fueled urbanization. However, uncontrolled urban development in some regions has resulted in urban environmental problems arising from an imbalance between supply and demand. This study aims to develop an integrated model for evaluating and prioritizing the management of hazardous urban sprawl in the Bandung metropolitan region of Indonesia. The novelty of this study lies in its pioneering application of long-term remote sensing data-based and machine learning techniques to formulate an urban sprawl priority index. This index is unique in its consideration of the impacts stemming from human economic activity, environmental degradation, and multi-disaster levels as integral components. The analysis of hazardous urban sprawl across three distinct time periods (1985-1993, 1993-2008, and 2008-2018) revealed that the 1993-2008 period had the highest increase in human economic activity, reaching 172,776 ha. The 1985-1993 period experienced the highest level of environmental degradation in the study area. Meanwhile, the 1993-2008 period showed the highest concentration of multi-hazard locations. The combined model of hazardous urban sprawl, incorporating the three parameters, indicated that the highest priority for intervention was on the outskirts of urban areas, specifically in West Bandung Regency, Cimahi, Bandung Regency, and East Bandung Regency. Regions with high-priority indices require greater attention from the government to mitigate the negative impacts of hazardous urban sprawl. This model, driven by the urban sprawl priority index, is envisioned to regulate urban movement in a more sustainable manner. Through the efficient monitoring of urban environments, the study seeks to guarantee the preservation of valuable natural resources while promoting sustainable urban development practices.
人类活动对土地开发的需求不断增加,推动了城市化进程。然而,一些地区无节制的城市发展导致了因供需失衡而产生的城市环境问题。本研究旨在开发一个综合模型,用于评估印度尼西亚万隆大都市区危险城市扩张的管理并确定其优先级。本研究的新颖之处在于率先应用基于长期遥感数据和机器学习技术来制定城市扩张优先级指数。该指数独特之处在于将人类经济活动、环境退化和多灾害水平的影响作为整体组成部分加以考虑。对三个不同时间段(1985 - 1993年、1993 - 2008年和2008 - 2018年)的危险城市扩张分析表明,1993 - 2008年期间人类经济活动增长最高,达到172,776公顷。1985 - 1993年期间研究区域的环境退化程度最高。与此同时,1993 - 2008年期间多灾害地点的集中度最高。纳入这三个参数的危险城市扩张综合模型表明,干预的最高优先级位于城市郊区,特别是在西万隆县、芝马希、万隆县和东万隆县。高优先级指数的地区需要政府给予更多关注,以减轻危险城市扩张的负面影响。这个由城市扩张优先级指数驱动的模型旨在以更可持续的方式规范城市发展。通过对城市环境的有效监测,该研究旨在保障宝贵自然资源的保护,同时促进可持续城市发展实践。