Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, Guangdong Province, China.
Ganjiang Chinese Medicine Innovation Center, Xinqizhou East Road 888, Ganjiang New Area, Nanchang 330000, China.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae281.
G-protein coupled receptors (GPCRs), crucial in various diseases, are targeted of over 40% of approved drugs. However, the reliable acquisition of experimental GPCRs structures is hindered by their lipid-embedded conformations. Traditional protein-ligand interaction models falter in GPCR-drug interactions, caused by limited and low-quality structures. Generalized models, trained on soluble protein-ligand pairs, are also inadequate. To address these issues, we developed two models, DeepGPCR_BC for binary classification and DeepGPCR_RG for affinity prediction. These models use non-structural GPCR-ligand interaction data, leveraging graph convolutional networks and mol2vec techniques to represent binding pockets and ligands as graphs. This approach significantly speeds up predictions while preserving critical physical-chemical and spatial information. In independent tests, DeepGPCR_BC surpassed Autodock Vina and Schrödinger Dock with an area under the curve of 0.72, accuracy of 0.68 and true positive rate of 0.73, whereas DeepGPCR_RG demonstrated a Pearson correlation of 0.39 and root mean squared error of 1.34. We applied these models to screen drug candidates for GPR35 (Q9HC97), yielding promising results with three (F545-1970, K297-0698, S948-0241) out of eight candidates. Furthermore, we also successfully obtained six active inhibitors for GLP-1R. Our GPCR-specific models pave the way for efficient and accurate large-scale virtual screening, potentially revolutionizing drug discovery in the GPCR field.
G 蛋白偶联受体(GPCRs)在各种疾病中起着至关重要的作用,它们是 40%以上已批准药物的靶点。然而,由于其脂质嵌入的构象,可靠地获得实验 GPCR 结构受到阻碍。传统的蛋白质-配体相互作用模型在 GPCR-药物相互作用中失效,这是由于结构有限且质量低造成的。基于可溶性蛋白质-配体对训练的通用模型也不充分。为了解决这些问题,我们开发了两种模型,即用于二元分类的 DeepGPCR_BC 和用于亲和力预测的 DeepGPCR_RG。这些模型使用非结构 GPCR-配体相互作用数据,利用图卷积网络和 mol2vec 技术将结合口袋和配体表示为图。这种方法大大加快了预测速度,同时保留了关键的物理化学和空间信息。在独立测试中,DeepGPCR_BC 以 0.72 的曲线下面积、0.68 的准确率和 0.73 的真阳性率超过了 Autodock Vina 和 Schrödinger Dock,而 DeepGPCR_RG 则表现出 0.39 的 Pearson 相关系数和 1.34 的均方根误差。我们将这些模型应用于 GPR35(Q9HC97)的候选药物筛选,从 8 个候选药物中得到了 3 个(F545-1970、K297-0698、S948-0241)有前景的结果。此外,我们还成功获得了 6 种 GLP-1R 的活性抑制剂。我们的 GPCR 特异性模型为高效准确的大规模虚拟筛选铺平了道路,有可能彻底改变 GPCR 领域的药物发现。