Suppr超能文献

基于集成 CatBoost 模型的复杂数据集在车辆分类中的应用。

Application of an ensemble CatBoost model over complex dataset for vehicle classification.

机构信息

Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, India.

Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, India.

出版信息

PLoS One. 2024 Jun 12;19(6):e0304619. doi: 10.1371/journal.pone.0304619. eCollection 2024.

Abstract

The classification of vehicles presents notable challenges within the domain of image processing. Traditional models suffer from inefficiency, prolonged training times for datasets, intricate feature extraction, and variable assignment complexities for classification. Conventional methods applied to categorize vehicles from extensive datasets often lead to errors, misclassifications, and unproductive outcomes. Consequently, leveraging machine learning techniques emerges as a promising solution to tackle these challenges. This study adopts a machine learning approach to alleviate image misclassifications and manage large quantities of vehicle images effectively. Specifically, a contrast enhancement technique is employed in the pre-processing stage to highlight pixel values in vehicle images. In the feature segmentation stage, Mask-R-CNN is utilized to categorize pixels into predefined classes. VGG16 is then employed to extract features from vehicle images, while an autoencoder aids in selecting features by learning non-linear input features and compressing representation features. Finally, the CatBoost (CB) algorithm is implemented for vehicle classification (VC) in diverse critical environments, such as inclement weather, twilight, and instances of vehicle blockage. Extensive experiments are conducted using different large-scale datasets with various machine learning platforms. The findings indicate that CB (presumably a specific method or algorithm) attains the highest level of performance on the large-scale dataset named UFPR-ALPR, with an accuracy rate of 98.89%.

摘要

车辆分类在图像处理领域存在显著挑战。传统模型效率低下,在数据集上的训练时间较长,特征提取复杂,分类的变量赋值也复杂。传统方法应用于从大量数据集分类车辆往往会导致错误、误分类和无成效的结果。因此,利用机器学习技术成为解决这些挑战的有前途的方法。本研究采用机器学习方法来减轻图像误分类并有效地管理大量车辆图像。具体来说,在预处理阶段采用对比度增强技术来突出车辆图像中的像素值。在特征分割阶段,使用 Mask-R-CNN 将像素分类到预定义的类别中。然后,使用 VGG16 从车辆图像中提取特征,而自动编码器通过学习非线性输入特征和压缩表示特征来帮助选择特征。最后,使用 CatBoost(CB)算法在不同的关键环境(如恶劣天气、黄昏和车辆遮挡实例)中进行车辆分类(VC)。使用不同的机器学习平台和各种大规模数据集进行了广泛的实验。结果表明,CB(大概是一种特定的方法或算法)在名为 UFPR-ALPR 的大规模数据集上实现了最高的性能,准确率为 98.89%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/642f/11168699/8022199e467f/pone.0304619.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验