Suppr超能文献

机器学习算法整合批量和单细胞 RNA 数据,揭示脑出血后的氧化应激。

Machine learning algorithms integrate bulk and single-cell RNA data to unveil oxidative stress following intracerebral hemorrhage.

机构信息

Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurosurgery, Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, China.

出版信息

Int Immunopharmacol. 2024 Aug 20;137:112449. doi: 10.1016/j.intimp.2024.112449. Epub 2024 Jun 11.

Abstract

BACKGROUND

Increased oxidative stress (OS) activity following intracerebral hemorrhage (ICH) had significantly impacting patient prognosis. Identifying optimal genes associated with OS could enhance the understanding of OS after ICH.

METHODS

We employed single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of OS across various cellular tiers following ICH, aiming to acquire biological insights into ICH. We utilized AUCell, Ucell, singscore, ssgsea, and AddModuleScore algorithms, along with correlation analysis, to identify hub genes influencing high OS post-ICH. Furthermore, we employed four machine learning algorithms, eXtreme Gradient Boosting, Boruta, Random Forest, and Least Absolute Shrinkage and Selection Operator, to identify the optimal feature genes. To validate the accuracy of our analysis, we conducted validation in ICH animal experiments.

RESULTS

After analyzing the scRNA-seq dataset using various algorithms, we found that OS activity exhibited heterogeneity across different cellular layers following ICH, with particularly heightened activity observed in monocytes. Further integration of bulk data and machine learning algorithms revealed that ANXA2 and COTL1 were closely associated with high OS after ICH. Our animal experiments demonstrated an increase in OS expression post-ICH. Additionally, the protein expression of ANXA2 and COTL1 was significantly elevated and co-localized with microglia. Pearson correlation coefficient analysis revealed a significant correlation between ANXA2 and OS, indicating strong consistency (r = 0.84, p < 0.05). Similar results were observed for COTL1 and OS (r = 0.69, p < 0.05).

CONCLUSIONS

Following ICH, ANXA2 and COTL1 might penetrate the brain via monocytes, localize within microglia, and enhance OS activity. This might help us better understand OS after ICH.

摘要

背景

脑出血(ICH)后氧化应激(OS)活性增加对患者预后有显著影响。确定与 OS 相关的最佳基因可以增强对 ICH 后 OS 的理解。

方法

我们采用单细胞 RNA 测序(scRNA-seq)技术研究 ICH 后不同细胞层 OS 的异质性,旨在获得对 ICH 的生物学认识。我们使用了 AUCell、Ucell、singscore、ssgsea 和 AddModuleScore 算法,以及相关性分析,来识别影响 ICH 后高 OS 的关键基因。此外,我们还使用了四种机器学习算法,即极端梯度提升、Boruta、随机森林和最小绝对收缩和选择算子,来识别最佳特征基因。为了验证我们分析的准确性,我们在 ICH 动物实验中进行了验证。

结果

使用多种算法对 scRNA-seq 数据集进行分析后,我们发现 ICH 后不同细胞层的 OS 活性存在异质性,单核细胞中的活性尤其高。进一步整合批量数据和机器学习算法,发现 ANXA2 和 COTL1 与 ICH 后高 OS 密切相关。我们的动物实验显示 ICH 后 OS 表达增加。此外,ANXA2 和 COTL1 的蛋白表达明显升高,并与小胶质细胞共定位。Pearson 相关系数分析显示 ANXA2 与 OS 之间存在显著相关性,一致性较强(r=0.84,p<0.05)。COTL1 与 OS 之间也存在相似的相关性(r=0.69,p<0.05)。

结论

ICH 后,ANXA2 和 COTL1 可能通过单核细胞穿透大脑,在小胶质细胞中定位,并增强 OS 活性。这可能有助于我们更好地理解 ICH 后的 OS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验