Suppr超能文献

通过单细胞 RNA 测序、AlphaFold 2 和机器学习揭示增殖性糖尿病视网膜病变的分子复杂性。

Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning.

机构信息

Department of Endocrinology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.

出版信息

Front Endocrinol (Lausanne). 2024 May 10;15:1382896. doi: 10.3389/fendo.2024.1382896. eCollection 2024.

Abstract

BACKGROUND

Proliferative diabetic retinopathy (PDR), a major cause of blindness, is characterized by complex pathogenesis. This study integrates single-cell RNA sequencing (scRNA-seq), Non-negative Matrix Factorization (NMF), machine learning, and AlphaFold 2 methods to explore the molecular level of PDR.

METHODS

We analyzed scRNA-seq data from PDR patients and healthy controls to identify distinct cellular subtypes and gene expression patterns. NMF was used to define specific transcriptional programs in PDR. The oxidative stress-related genes (ORGs) identified within Meta-Program 1 were utilized to construct a predictive model using twelve machine learning algorithms. Furthermore, we employed AlphaFold 2 for the prediction of protein structures, complementing this with molecular docking to validate the structural foundation of potential therapeutic targets. We also analyzed protein-protein interaction (PPI) networks and the interplay among key ORGs.

RESULTS

Our scRNA-seq analysis revealed five major cell types and 14 subcell types in PDR patients, with significant differences in gene expression compared to those in controls. We identified three key meta-programs underscoring the role of microglia in the pathogenesis of PDR. Three critical ORGs (ALKBH1, PSIP1, and ATP13A2) were identified, with the best-performing predictive model demonstrating high accuracy (AUC of 0.989 in the training cohort and 0.833 in the validation cohort). Moreover, AlphaFold 2 predictions combined with molecular docking revealed that resveratrol has a strong affinity for ALKBH1, indicating its potential as a targeted therapeutic agent. PPI network analysis, revealed a complex network of interactions among the hub ORGs and other genes, suggesting a collective role in PDR pathogenesis.

CONCLUSION

This study provides insights into the cellular and molecular aspects of PDR, identifying potential biomarkers and therapeutic targets using advanced technological approaches.

摘要

背景

增生性糖尿病视网膜病变(PDR)是失明的主要原因,其发病机制复杂。本研究整合单细胞 RNA 测序(scRNA-seq)、非负矩阵分解(NMF)、机器学习和 AlphaFold 2 方法,从分子水平探讨 PDR。

方法

我们分析了来自 PDR 患者和健康对照的 scRNA-seq 数据,以鉴定不同的细胞亚型和基因表达模式。NMF 用于定义 PDR 中的特定转录程序。在 Meta-Program 1 中鉴定的与氧化应激相关的基因(ORGs)用于使用 12 种机器学习算法构建预测模型。此外,我们使用 AlphaFold 2 进行蛋白质结构预测,并进行分子对接验证潜在治疗靶点的结构基础。我们还分析了蛋白质-蛋白质相互作用(PPI)网络和关键 ORGs 之间的相互作用。

结果

我们的 scRNA-seq 分析显示,PDR 患者中有 5 种主要细胞类型和 14 种亚细胞类型,与对照组相比,其基因表达存在显著差异。我们确定了三个关键的元程序,强调了小胶质细胞在 PDR 发病机制中的作用。鉴定了三个关键的 ORGs(ALKBH1、PSIP1 和 ATP13A2),表现最佳的预测模型显示出较高的准确性(训练队列的 AUC 为 0.989,验证队列的 AUC 为 0.833)。此外,AlphaFold 2 预测结合分子对接表明,白藜芦醇与 ALKBH1 具有很强的亲和力,表明其作为靶向治疗药物的潜力。PPI 网络分析揭示了枢纽 ORGs 与其他基因之间复杂的相互作用网络,表明它们在 PDR 发病机制中具有共同作用。

结论

本研究深入了解了 PDR 的细胞和分子方面,使用先进的技术方法鉴定了潜在的生物标志物和治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d801/11116564/923ceca620a2/fendo-15-1382896-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验