The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill Cornell Neuroscience PhD Program, New York, NY, USA.
Cell. 2024 Jul 11;187(14):3671-3689.e23. doi: 10.1016/j.cell.2024.05.030. Epub 2024 Jun 11.
Ongoing, early-stage clinical trials illustrate the translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, an unresolved challenge is the extensive cell death following transplantation. Here, we performed a pooled CRISPR-Cas9 screen to enhance postmitotic dopamine neuron survival in vivo. We identified p53-mediated apoptotic cell death as a major contributor to dopamine neuron loss and uncovered a causal link of tumor necrosis factor alpha (TNF-α)-nuclear factor κB (NF-κB) signaling in limiting cell survival. As a translationally relevant strategy to purify postmitotic dopamine neurons, we identified cell surface markers that enable purification without the need for genetic reporters. Combining cell sorting and treatment with adalimumab, a clinically approved TNF-α inhibitor, enabled efficient engraftment of postmitotic dopamine neurons with extensive reinnervation and functional recovery in a preclinical PD mouse model. Thus, transient TNF-α inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic hPSC-derived dopamine neurons in PD.
正在进行的早期临床前试验表明,基于人多能干细胞(hPSC)的细胞疗法在帕金森病(PD)中有转化应用的潜力。然而,一个尚未解决的挑战是移植后广泛的细胞死亡。在这里,我们进行了一项基于 CRISPR-Cas9 的 pooled 筛选,以增强体内诱导多能干细胞源性多巴胺神经元的存活。我们发现 p53 介导的细胞凋亡是导致多巴胺神经元丢失的主要原因,并揭示了肿瘤坏死因子-α(TNF-α)-核因子 κB(NF-κB)信号通路在限制细胞存活方面的因果关系。作为一种与多巴胺神经元纯化相关的转化策略,我们鉴定了细胞表面标记物,这些标记物可在不需要遗传报告基因的情况下实现多巴胺神经元的纯化。细胞分选和使用阿达木单抗(一种临床批准的 TNF-α 抑制剂)联合治疗,可实现诱导多能干细胞源性诱导多能干细胞源性多巴胺神经元的有效移植,并在 PD 小鼠模型中实现广泛的再神经支配和功能恢复。因此,短暂的 TNF-α 抑制是一种有临床意义的策略,可增强 PD 中诱导多能干细胞源性多巴胺神经元的存活和移植。