Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia.
MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
JACC Cardiovasc Imaging. 2020 Nov;13(11):2371-2383. doi: 10.1016/j.jcmg.2020.06.033. Epub 2020 Aug 26.
This study sought to determine whether coronary computed tomography angiography (CCTA)-based radiomic analysis of pericoronary adipose tissue (PCAT) could distinguish patients with acute myocardial infarction (MI) from patients with stable or no coronary artery disease (CAD).
Imaging of PCAT with CCTA enables detection of coronary inflammation. Radiomics involves extracting quantitative features from medical images to create big data and identify novel imaging biomarkers.
In a prospective case-control study, 60 patients with acute MI underwent CCTA within 48 h of admission, before invasive angiography. These subjects were matched to patients with stable CAD (n = 60) and controls with no CAD (n = 60) by age, sex, risk factors, medications, and CT tube voltage. PCAT was segmented around the proximal right coronary artery (RCA) in all patients and around culprit and nonculprit lesions in patients with MI. PCAT segmentations were analyzed using Radiomics Image Analysis software.
Of 1,103 calculated radiomic parameters, 20.3% differed significantly between MI patients and controls, and 16.5% differed between patients with MI and stable CAD (critical p < 0.0006); whereas none differed between patients with stable CAD and controls. On cluster analysis, the most significant radiomic parameters were texture or geometry based. At 6 months post-MI, there was no significant change in the PCAT radiomic profile around the proximal RCA or nonculprit lesions. Using machine learning (XGBoost), a model integrating clinical features (risk factors, serum lipids, high-sensitivity C-reactive protein), PCAT attenuation, and radiomic parameters provided superior discrimination of acute MI (area under the receiver operator characteristic curve [AUC]: 0.87) compared with a model with clinical features and PCAT attenuation (AUC: 0.77; p = 0.001) or clinical features alone (AUC: 0.76; p < 0.001).
Patients with acute MI have a distinct PCAT radiomic phenotype compared with patients with stable or no CAD. Using machine learning, a radiomics-based model outperforms a PCAT attenuation-based model in accurately identifying patients with MI.
本研究旨在探讨基于冠状动脉 CT 血管造影(CCTA)的冠状动脉周围脂肪组织(PCAT)放射组学分析是否能够区分急性心肌梗死(MI)患者与稳定型或无冠心病(CAD)患者。
CCTA 可对 PCAT 进行成像,从而检测冠状动脉炎症。放射组学涉及从医学图像中提取定量特征以创建大数据并识别新的成像生物标志物。
在一项前瞻性病例对照研究中,60 例急性 MI 患者于入院后 48 小时内行 CCTA 检查,随后进行有创血管造影。这些患者按年龄、性别、危险因素、药物治疗和 CT 管电压与稳定型 CAD 患者(n=60)和无 CAD 患者(n=60)相匹配。所有患者均在近端右冠状动脉(RCA)周围进行 PCAT 分段,MI 患者则在罪犯和非罪犯病变周围进行 PCAT 分段。使用 Radiomics Image Analysis 软件对 PCAT 分段进行分析。
在计算的 1103 个放射组学参数中,MI 患者与对照组之间有 20.3%存在显著差异,MI 患者与稳定型 CAD 患者之间有 16.5%存在显著差异(临界 p<0.0006);而稳定型 CAD 患者与对照组之间无显著差异。在聚类分析中,最显著的放射组学参数基于纹理或几何形状。在 MI 后 6 个月时,近端 RCA 或非罪犯病变周围的 PCAT 放射组学特征无明显变化。使用机器学习(XGBoost),整合临床特征(危险因素、血脂、高敏 C 反应蛋白)、PCAT 衰减和放射组学参数的模型对急性 MI 的区分能力优于仅包含临床特征和 PCAT 衰减的模型(AUC:0.77;p=0.001)或仅包含临床特征的模型(AUC:0.76;p<0.001)。
与稳定型或无 CAD 患者相比,急性 MI 患者的 PCAT 放射组学表型存在显著差异。使用机器学习,基于放射组学的模型在准确识别 MI 患者方面优于基于 PCAT 衰减的模型。