文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用衰老癌细胞的细胞膜通过仿生纳米疫苗增强癌症免疫疗法。

Leveraging Senescent Cancer Cell Membrane to Potentiate Cancer Immunotherapy Through Biomimetic Nanovaccine.

机构信息

Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.

National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.

出版信息

Adv Sci (Weinh). 2024 Aug;11(30):e2400630. doi: 10.1002/advs.202400630. Epub 2024 Jun 12.


DOI:10.1002/advs.202400630
PMID:38867377
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11321648/
Abstract

Senescent cancer cells are endowed with high immunogenic potential that has been leveraged to elicit antitumor immunity and potentially complement anticancer therapies. However, the efficacy of live senescent cancer cell-based vaccination is limited by interference from immunosuppressive senescence-associated secretory phenotype and pro-tumorigenic capacity of senescent cells. Here, a senescent cancer cell-based nanovaccine with strong immunogenicity and favorable potential for immunotherapy is reported. The biomimetic nanovaccine integrating a senescent cancer cell membrane-coated nanoadjuvant outperforms living senescent cancer cells in enhancing dendritic cells (DCs) internalization, improving lymph node targeting, and enhancing immune responses. In contrast to nanovaccines generated from immunogenic cell death-induced tumor cells, senescent nanovaccines facilitate DC maturation, eliciting superior antitumor protection and improving therapeutic outcomes in melanoma-challenged mice with fewer side effects when combined with αPD-1. The study suggests a versatile biomanufacturing approach to maximize immunogenic potential and minimize adverse effects of senescent cancer cell-based vaccination and advances the design of biomimetic nanovaccines for cancer immunotherapy.

摘要

衰老癌细胞具有较高的免疫原性,可利用其引发抗肿瘤免疫,并可能补充癌症治疗方法。然而,活的衰老癌细胞疫苗的疗效受到免疫抑制性衰老相关分泌表型和衰老细胞的促肿瘤能力的干扰。本文报道了一种具有强免疫原性和良好免疫治疗潜力的衰老癌细胞基纳米疫苗。这种仿生纳米疫苗整合了一种由衰老癌细胞膜包被的纳米佐剂,在增强树突状细胞(DC)内化、改善淋巴结靶向和增强免疫反应方面优于活的衰老癌细胞。与由免疫原性细胞死亡诱导的肿瘤细胞产生的纳米疫苗不同,衰老纳米疫苗促进 DC 成熟,在与 αPD-1 联合使用时,可引发更好的抗肿瘤保护作用,并改善黑色素瘤挑战小鼠的治疗效果,且副作用更少。该研究提出了一种通用的生物制造方法,以最大限度地提高衰老癌细胞基疫苗的免疫原性潜力,并最小化其不良反应,并推进了用于癌症免疫治疗的仿生纳米疫苗的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/962f47783e04/ADVS-11-2400630-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/3cd9b27a3f40/ADVS-11-2400630-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/d370030dd6c3/ADVS-11-2400630-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/0cfab10cfc55/ADVS-11-2400630-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/abed5ad27d89/ADVS-11-2400630-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/d5c5716719cd/ADVS-11-2400630-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/962f47783e04/ADVS-11-2400630-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/3cd9b27a3f40/ADVS-11-2400630-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/d370030dd6c3/ADVS-11-2400630-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/0cfab10cfc55/ADVS-11-2400630-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/abed5ad27d89/ADVS-11-2400630-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/d5c5716719cd/ADVS-11-2400630-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1010/11321648/962f47783e04/ADVS-11-2400630-g003.jpg

相似文献

[1]
Leveraging Senescent Cancer Cell Membrane to Potentiate Cancer Immunotherapy Through Biomimetic Nanovaccine.

Adv Sci (Weinh). 2024-8

[2]
Manganese oxide-constructed multifunctional biomimetic nanovaccine for robust tumor-specific T cell priming and chemodynamic therapy.

Biomaterials. 2024-9

[3]
A Biomimetic Autophagosomes-Based Nanovaccine Boosts Anticancer Immunity.

Adv Mater. 2024-10

[4]
Stimulator of Interferon Genes-Activated Biomimetic Dendritic Cell Nanovaccine as a Chemotherapeutic Booster to Enhance Systemic Fibrosarcoma Treatment.

ACS Nano. 2024-9-3

[5]
Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine.

Small. 2023-4

[6]
Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy.

Biomaterials. 2020-3

[7]
Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance.

Drug Resist Updat. 2024-7

[8]
Genetically Engineered Cytomembrane Nanovaccines for Cancer Immunotherapy.

Adv Healthc Mater. 2024-5

[9]
Glucosylated Nanovaccines for Dendritic Cell-Targeted Antigen Delivery and Amplified Cancer Immunotherapy.

ACS Nano. 2024-9-17

[10]
Identification of a novel DEC-205 binding peptide to develop dendritic cell-targeting nanovaccine for cancer immunotherapy.

J Control Release. 2024-9

引用本文的文献

[1]
A multifunctional biomimetic nanoplatform combined with immune checkpoint blockade for triple-negative breast cancer immunotherapy through inhibiting polarization of M2 macrophages.

J Nanobiotechnology. 2025-8-18

[2]
Biomimetic nanovaccines in cancer therapy: mechanisms, efficacy, and clinical translation.

Mater Today Bio. 2025-7-18

[3]
Strategic Advances in Targeted Delivery Carriers for Therapeutic Cancer Vaccines.

Int J Mol Sci. 2025-7-17

[4]
Nature-Inspired Nanostructures from Multiple-Species Biomembranes: Rational Engineering and Therapeutic Applications in Tumor-Targeted Nanomedicine.

Adv Sci (Weinh). 2025-9

[5]
Barriers in bone tumor treatment: the emerging role of drug delivery systems.

Med Oncol. 2025-6-28

[6]
Biomimetic bioreactor for potentiated uricase replacement therapy in hyperuricemia and gout.

Front Bioeng Biotechnol. 2025-1-7

[7]
Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against -mutant melanoma.

Bioact Mater. 2024-12-27

[8]
Reprogramming cellular senescence in the tumor microenvironment augments cancer immunotherapy through multifunctional nanocrystals.

Sci Adv. 2024-11

本文引用的文献

[1]
An Engineered Nanoplatform with Tropism Toward Irradiated Glioblastoma Augments Its Radioimmunotherapy Efficacy.

Adv Mater. 2024-8

[2]
Leveraging Radiation-triggered Metal Prodrug Activation Through Nanosurface Energy Transfer for Directed Radio-chemo-immunotherapy.

Angew Chem Int Ed Engl. 2024-3-4

[3]
Dendritic cells as shepherds of T cell immunity in cancer.

Immunity. 2023-10-10

[4]
Supramolecular Biomaterials for Cancer Immunotherapy.

Research (Wash D C). 2023-9-12

[5]
Dying tumor cells-inspired vaccine for boosting humoral and cellular immunity against cancer.

J Control Release. 2023-7

[6]
Senescent cells as thermostats of antitumor immunity.

Sci Transl Med. 2023-6-7

[7]
Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine.

Small. 2023-4

[8]
Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy.

Acta Pharm Sin B. 2022-12

[9]
Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80.

Nat Cancer. 2022-12

[10]
Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity.

Cancer Discov. 2023-2-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索