文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cytotoxicity of green synthesized zinc oxide nanoparticles using on Vero cells.

作者信息

Maheswaran Harshyini, Djearamane Sinouvassane, Tanislaus Antony Dhanapal Anto Cordelia, Wong Ling Shing

机构信息

Department of Biomedical Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.

Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, India.

出版信息

Heliyon. 2024 May 15;10(11):e31316. doi: 10.1016/j.heliyon.2024.e31316. eCollection 2024 Jun 15.


DOI:10.1016/j.heliyon.2024.e31316
PMID:38868065
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11167271/
Abstract

Zinc oxide nanoparticles (ZnO NPs) have become a highly regarded substance in various industries especially biologically synthesized ZnO NPs due to their adherence to the principles of green chemistry. However, concerns have been raised regarding the potential cytotoxic effects of ZnO NPs on biological systems. This study aimed to investigate and compare the cytotoxicity of ZnO NPs that were synthesized through chemical (C-ZnO NPs) and green approach using leaf aqueous extract (Ma-ZnO NPs) on Vero cells. Characterization of ZnO NPs through Uv-Vis, FESEM, EDX, XRD, FTIR and XPS confirmed the successful synthesis of C- and Ma-ZnO NPs. MTT and ROS assays revealed that C- and Ma-ZnO NPs induced a concentration- and time-dependent cytotoxic effect on Vero cells. Remarkably, Ma-ZnO NPs showed significantly higher cell viability compared to C-ZnO NPs. The corelation of ROS and vell viability suggest that elevated ROS levels can lead to cell damage and even cell death. Flow cytometry analysis indicated that Ma-ZnO NPs exposed cells had more viable cells and a smaller cell population in the late and early apoptotic stage. Furthermore, more cells were arrested in the G1 phase upon exposure to C-ZnO NPs, which is associated with oxidative stress and DNA damage caused by ROS generation, proving its higher cytotoxicity than Ma-ZnO NPs. Similarly, time-dependent cytotoxicity and morphological alterations were observed in C- and Ma-ZnO NPs treated cells, indicating cellular damage. Furthermore, fluorescence microscopy also demonstrated a time-dependent increase in ROS formation in cells exposed to C- and Ma-ZnO NPs. In conclusion, the findings suggest that green ZnO NPs possess a favourable biocompatibility profile, exhibiting reduced cytotoxicity compared to chemically synthesized ZnO NPs on Vero cells. These results emphasize the potential of green synthesis methods for the development of safer and environmentally friendly ZnO NPs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/d44ae8ab4047/gr24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/af9864b6f06b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/2c2f18cd25c5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/c14c87853dd5/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/f12b3e138ac6/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/e5480645d8aa/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/508b22d1e6fb/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/5e2a04bfa09c/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/78d3d016442d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/aa7abbaf26ac/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/32b4e40633bd/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/90382a3b8a00/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/c78e65e5d499/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/7931be9e5f06/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/b4806ded94db/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/cda933efb7c6/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/de7f05954598/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/1c02218aad71/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/d24133c16bf9/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/eb00c919a4c8/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/c9ce81734eec/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/ded262f7a5ab/gr21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/9c8f6358306b/gr22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/4850da668205/gr23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/d44ae8ab4047/gr24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/af9864b6f06b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/2c2f18cd25c5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/c14c87853dd5/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/f12b3e138ac6/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/e5480645d8aa/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/508b22d1e6fb/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/5e2a04bfa09c/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/78d3d016442d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/aa7abbaf26ac/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/32b4e40633bd/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/90382a3b8a00/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/c78e65e5d499/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/7931be9e5f06/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/b4806ded94db/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/cda933efb7c6/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/de7f05954598/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/1c02218aad71/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/d24133c16bf9/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/eb00c919a4c8/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/c9ce81734eec/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/ded262f7a5ab/gr21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/9c8f6358306b/gr22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/4850da668205/gr23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bc/11167271/d44ae8ab4047/gr24.jpg

相似文献

[1]
Cytotoxicity of green synthesized zinc oxide nanoparticles using on Vero cells.

Heliyon. 2024-5-15

[2]
Evaluation of the cytotoxicity, antioxidant activity, and molecular docking of biogenic zinc oxide nanoparticles derived from pumpkin seeds.

Microsc Res Tech. 2024-3

[3]
Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles.

J Appl Microbiol. 2022-1

[4]
Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles: Assessment of Antimicrobial and Anticancer Activity.

Molecules. 2020-10-23

[5]
Antiplatelet, cytotoxic activities and characterization of green-synthesized zinc oxide nanoparticles using aqueous extract of Nephrolepis exaltata.

Environ Sci Pollut Res Int. 2023-6

[6]
Comparative study of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of organic contaminants in wastewater treatment.

J Hazard Mater. 2021-3-15

[7]
Green Fabrication of Zinc Oxide Nanoparticles Using Leaf Extract: Characterization and In Vitro Evaluation of Cytotoxicity and Antibacterial Properties.

Molecules. 2021-10-11

[8]
Affective Antidepressant, Cytotoxic Activities, and Characterization of Phyto-Assisted Zinc Oxide Nanoparticles Synthesized Using Aqueous Extract.

Biomed Res Int. 2022

[9]
Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells.

Enzyme Microb Technol. 2018-6-25

[10]
Green Synthesis and Characterization of ZnO Nanoparticles Using (L.) Aqueous Leaf Extract and Their Antioxidant, Antibacterial and Anti-inflammatory Activities.

Antioxidants (Basel). 2022-7-26

引用本文的文献

[1]
Defect Tailored NiO Quantum Dots via Energy-Efficient Synthesis: Electronic Transport and Selective Cytotoxicity.

ACS Omega. 2025-8-7

[2]
Eco-friendly synthesis and biomedical potential of zinc oxide nanoparticles using Mentha piperita aqueous extract: comparative analysis with chemically synthesized and commercial nanoparticles.

Bioprocess Biosyst Eng. 2025-5-24

[3]
Synergic effect and biosafety of chitosan/zinc complex nanoparticle-based carboxymethyl cellulose coatings for postharvest strawberry preservation.

RSC Adv. 2025-5-12

[4]
Photocatalytic Degradation of Brilliant Blue Dye Under Solar Light Irradiation: An Insight Into Mechanistic, Kinetics, Mineralization and Scavenging Studies.

J Fluoresc. 2025-3-5

[5]
(Somm. et Levier) Manden.-A Comprehensive Phytochemical and Biological Evaluation.

Molecules. 2025-2-5

[6]
Antibacterial Properties of PMMA/ZnO(NanoAg) Coatings for Dental Implant Abutments.

Materials (Basel). 2025-1-15

[7]
Optimisation, Synthesis, and Characterisation of ZnO Nanoparticles Using () Leaf Extracts for Antibacterial and Photodegradation Applications.

Int J Mol Sci. 2024-10-29

[8]
Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi.

Biomimetics (Basel). 2024-7-12

[9]
Phytofabricated ZnO-NPs mediated by leaf extract and its potential as a diosgenin delivery vehicle.

RSC Adv. 2024-7-23

本文引用的文献

[1]
Husk-like Zinc Oxide Nanoparticles Induce Apoptosis through ROS Generation in Epidermoid Carcinoma Cells: Effect of Incubation Period on Sol-Gel Synthesis and Anti-Cancerous Properties.

Biomedicines. 2023-1-23

[2]
Doxorubicin-Conjugated Zinc Oxide Nanoparticles, Biogenically Synthesised Using a Fungus , Exhibit High Therapeutic Efficacy against Lung Cancer Cells.

Molecules. 2022-4-18

[3]
Green Synthesis of Zinc Oxide Nanoparticles Using Pomegranate Fruit Peel and Solid Coffee Grounds vs. Chemical Method of Synthesis, with Their Biocompatibility and Antibacterial Properties Investigation.

Molecules. 2022-2-12

[4]
Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7.

Sci Rep. 2021-5-25

[5]
Visible-Light-Responsive Photocatalytic Activity Significantly Enhanced by Active [+] Defects in Self-Assembled ZnO Nanoparticles.

Inorg Chem. 2021-4-5

[6]
Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: An in-vitro study.

Arch Oral Biol. 2021-2

[7]
Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using (Class: Cyanophyceae) and Evaluation of their Biomedical Activities.

Nanomaterials (Basel). 2021-1-4

[8]
Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal From Wastewater.

Front Chem. 2020-11-27

[9]
Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties.

Sci Rep. 2020-11-17

[10]
Natural leaf-type as food packaging material for traditional food in Nigeria: sustainability aspects and theoretical circular economy solutions.

Environ Sci Pollut Res Int. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索