Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA.
J Cell Biol. 2024 Sep 2;223(9). doi: 10.1083/jcb.202312046. Epub 2024 Jun 13.
At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are together required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.
在每个细胞分裂过程中,纳米级的马达和微管会产生微米级的纺锤体。许多有丝分裂马达在体外沿微管进行螺旋运动,并且大多数马达都被预测会使纺锤体向左手方向扭曲。然而,人类纺锤体仅表现出轻微的整体扭曲,这就提出了一个问题,即这些分子扭矩是如何平衡的。在这里,我们发现上皮细胞系 MCF10A 的后期纺锤体具有较高的基线扭曲,并且我们确定了既能增加又能减少这种扭曲的因素。中期马达 KIF4A 和 MKLP1 在后期共同需要产生左手扭曲,我们表明 KIF4A 在体外产生左手扭矩。肌动蛋白细胞骨架也有助于左手扭曲,但动力蛋白及其皮质募集因子 LGN 与之相反。总之,我们的工作表明,力发生器从纺锤体内外以相反的方向调节扭曲,防止染色体分离过程中纺锤体强烈扭曲。