Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
Eur J Med Chem. 2024 Sep 5;275:116561. doi: 10.1016/j.ejmech.2024.116561. Epub 2024 Jun 7.
Quinolones, a key class of heterocyclics, are gaining popularity among organic and medicinal chemists due to their promising properties. Quinoline, with its broad spectrum of action, plays a primordial role in chemotherapy for cancer. Drugs include lenvatinib and its structural derivatives carbozantinib and bosutinib, and tipifarnib are the popular anticancer agents. Owing to the importance of quinoline, there are several classical methods for the synthesis such as, such as Gould-Jacobs, Conrad-Limpach, Camps cyclization, Skraup, Doebnervon Miller, Combes, Friedlander, Pfitzinger, and Niementowski synthesis. These methods are well-commended for developing an infinite variety of quinoline analogues. However, these procedures are associated with several drawbacks such as long reaction times, use of hazardous chemicals or stoichiometric proportions, difficulty of working up conditions, high temperatures, organic solvents, and the presence of numerous steps, all of which have an impact on the environment and the economy. As a result, researchers are working hard to develop green quinoline compounds in the hopes of making groundbreaking discoveries in the realm of cancer. In this review, we have highlighted significant research on quinoline-based compounds and their structure-activity relationship (SAR). Furthermore, because of the significant economic and environmental health and safety (EHS) concerns, more research is being dedicated to the green synthesis of quinolone derivatives. The current review offers recent advances in quinoline derivatives as anticancer agents for green synthesis using microwave, ultrasound, and one-pot synthesis. We believe that our findings will provide useful insight and inspire more green research on this framework to produce powerful and selective quinoline derivatives.
喹诺酮类是杂环化合物中的一个重要类别,由于其具有广阔的应用前景,在有机化学和药物化学领域中受到越来越多的关注。喹啉作为其母体结构,具有广谱的生物活性,在癌症的化学治疗中发挥着重要作用。包含仑伐替尼及其结构衍生物卡博替尼和波舒替尼,以及替匹法尼在内的药物都是广受欢迎的抗癌药物。鉴于喹啉的重要性,已经有多种经典的合成方法被开发出来,如 Gould-Jacobs、Conrad-Limpach、Camps 环化、Skraup、Doebner von Miller、Combes、Friedlander、Pfitzinger 和 Niementowski 合成法。这些方法为开发无限多样的喹啉类似物提供了很好的基础。然而,这些方法存在一些缺点,如反应时间长、使用危险化学品或化学计量比、反应条件难以处理、温度高、有机溶剂以及存在多个步骤等,这些都对环境和经济产生了影响。因此,研究人员正在努力开发绿色喹啉化合物,以期在癌症领域取得突破性的发现。在这篇综述中,我们强调了基于喹啉的化合物及其结构-活性关系(SAR)的重要研究进展。此外,由于经济、环境健康和安全(EHS)方面的重大问题,越来越多的研究致力于喹诺酮衍生物的绿色合成。本综述提供了关于使用微波、超声和一锅法进行绿色合成的喹啉衍生物作为抗癌剂的最新进展。我们相信,我们的发现将为这一领域提供有价值的见解,并激发更多关于该框架的绿色研究,以生产出高效、选择性的喹啉衍生物。