Suppr超能文献

使用可穿戴设备开发晚年抑郁症预测算法:一项队列研究方案

Developing prediction algorithms for late-life depression using wearable devices: a cohort study protocol.

作者信息

Lee Jin-Kyung, Kim Min-Hyuk, Hwang Sangwon, Lee Kyoung-Joung, Park Ji Young, Shin Taeksoo, Lim Hyo-Sang, Urtnasan Erdenebayar, Chung Moo-Kwon, Lee Jinhee

机构信息

Yonsei University - Mirae Campus, Wonju, Gangwon-do, Republic of Korea.

Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea.

出版信息

BMJ Open. 2024 Jun 13;14(6):e073290. doi: 10.1136/bmjopen-2023-073290.

Abstract

INTRODUCTION

Despite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to medical access. Wearable devices such as smartphones and smartwatches can help to screen MDD symptoms earlier in a natural setting while forgoing these concerns. However, previous research using wearable devices has mostly targeted the younger population. By collecting longitudinal data using wearable devices from the elderly population, this research aims to produce prediction algorithms for late-life depression and to develop strategies that strengthen medical access in community care systems.

METHODS AND ANALYSIS

The current cohort study recruited a subsample of 685 elderly people from the Korean Genome and Epidemiology Study-Cardiovascular Disease Association Study, a national large cohort established in 2004. The current study has been conducted over a 3-year period to explore the development patterns of late-life depression. Participants have completed three annual face-to-face interviews (baseline, the first follow-up and the second follow-up) and 2 years of app-based surveys and passive sensing data collection. All the data collection will end at the second follow-up interview. The collected self-report, observational and passive sensing data will be primarily analysed by machine learning.

ETHICS AND DISSEMINATION

This study protocol has been reviewed and approved by the Yonsei University Mirae Campus Institutional Review Board (1041849-2 02 111 SB-180-06) in South Korea. All participants provided written informed consent. The findings of this research will be disseminated by academic publications and conference presentations.

摘要

引言

尽管老年人群中重度抑郁症(MDD)的患病率很高,但由于耻辱感和医疗获取障碍,治疗率较低。智能手机和智能手表等可穿戴设备有助于在自然环境中更早地筛查MDD症状,同时避免这些问题。然而,以往使用可穿戴设备的研究大多针对年轻人群。通过使用可穿戴设备从老年人群中收集纵向数据,本研究旨在生成晚年抑郁症的预测算法,并制定加强社区护理系统中医疗获取的策略。

方法与分析

当前的队列研究从韩国基因组与流行病学研究-心血管疾病关联研究(2004年建立的全国大型队列)中招募了685名老年人的子样本。本研究已进行了3年,以探索晚年抑郁症的发展模式。参与者完成了三次年度面对面访谈(基线、第一次随访和第二次随访)以及基于应用程序的两年调查和被动传感数据收集。所有数据收集将在第二次随访访谈时结束。收集到的自我报告、观察和被动传感数据将主要通过机器学习进行分析。

伦理与传播

本研究方案已由韩国延世大学未来校区机构审查委员会(1041849-2 02 111 SB-180-06)审查并批准。所有参与者均提供了书面知情同意书。本研究的结果将通过学术出版物和会议报告进行传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4572/11177677/30966f64a444/bmjopen-2023-073290f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验